The warping may become an important factor for the precise transverse vibrations of curved beams.Thus,the first aim of this study is to specify the structural design parameters where the influence of cross-sectional w...The warping may become an important factor for the precise transverse vibrations of curved beams.Thus,the first aim of this study is to specify the structural design parameters where the influence of cross-sectional warping becomes great and the first-order shear deformation theory lacks the precision necessary.The outof-plane vibrations of the first-order shear deformation theory are compared with the warping-included vibrations as the curvature and/or thickness increase for symmetric and asymmetric transversely-functionally graded(TFG)curved beams.The second aim is to determine the influence of design parameters on the vibrations.The circular/exact elliptical beams are formed via curved mixed finite elements(MFEs)based on the exact curvature and length.The stress-free conditions are satisfied on three-dimensional(3D)constitutive equations.The variation of functionally graded(FG)material constituents is considered based on the power-law dependence.The cross-sectional warping deformations are defined over a displacement-type FE formulation.The warping-included MFEs(W-MFEs)provide satisfactory 3D structural characteristics with smaller degrees of freedom(DOFs)compared with the brick FEs.The Newmark method is used for the forced vibrations.展开更多
Three aluminium channel sections of US standard extruded dimension are mounted as cantilevers with x-axis symmetry. The flexural bending and shear that arise with applied axial torsion are each considered theoreticall...Three aluminium channel sections of US standard extruded dimension are mounted as cantilevers with x-axis symmetry. The flexural bending and shear that arise with applied axial torsion are each considered theoretically and numerically in terms of two longitudinal axes of loading not coincident with the shear centre. In particular, the warping displacements, stiffness and stress distributions are calculated for torsion applied to longitudinal axes passing through the section’s centroid and its web centre. The stress conversions derived from each action are superimposed to reveal a net sectional stress distribution. Therein, the influence of the axis position upon the net axial and shear stress distributions is established compared to previous results for each beam when loading is referred to a flexural axis through the shear centre. Within the net stress analysis is, it is shown how the constraint to free warping presented by the end fixing modifies the axial stress. The latter can be identified with the action of a ‘bimoment’ upon each thin-walled section.展开更多
Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under trans...Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre.展开更多
A theoretical method for static analysis of naturally curved and twisted beams under complicated loads was presented, with special attention devoted to the solving process of governing equations which take into accoun...A theoretical method for static analysis of naturally curved and twisted beams under complicated loads was presented, with special attention devoted to the solving process of governing equations which take into account the effects of torsion-related warping as well as transverse shear deformations. These governing equations, in special cases, can be readily solved and yield the solutions to the problem. The solutions can be used for the analysis of the beams, including the calculation of various internal forces, stresses, strains and displacements. The present theory will be used to investigate the stresses and displacements of a plane curved beam subjected to the action of horizontal and vertical distributed loads. The numerical results obtained by the present theory are found to be in very good agreement with the results of the FEM results. Besides, the present theory is not limited to the beams with a double symmetric cross-section, it can also be extended to those with arbitrary cross-sectional shape.展开更多
The purpose of the paper is to present an exact analytical solution of a spatial curved beam under multiple loads based on the existing theory. The transverse shear deformation and torsion-related warping effects are ...The purpose of the paper is to present an exact analytical solution of a spatial curved beam under multiple loads based on the existing theory. The transverse shear deformation and torsion-related warping effects are taken into account. By using this solution, a plane curved beam subjected to uniform vertical loads and torsions is analyzed. Accuracy and efficiency of present theory are demonstrated by comparing its numerical results with Heins' solution. Furthermore, the effects of the transverse shear deformation and torsion-related warping on deformation of the beam are discussed.展开更多
According to the stationary principle of potential energy and the generalized coordinate method, a stiffness matrix of a beam element considering distortion effects is derived. Using the stiffness matrix of the beam e...According to the stationary principle of potential energy and the generalized coordinate method, a stiffness matrix of a beam element considering distortion effects is derived. Using the stiffness matrix of the beam element, a finite element program for computing thin-walled box steel beams is developed. And the program can take the section distortion and warping effects into account. The influences of diaphragm spacing on the mechanical behavior of thin-walled box beams are analyzed by the program. The numerical analysis shows that setting diaphragms have the greatest influence on the distortion normal stress, while there is very little influence on the bending normal stress. Only when the distance of adjacent diaphragms decreases to a certain value, will the distortion normal stress in the thin-walled box beam obviously reduce under the distortion load. Finally, a distortion-warping coefficient γ is introduced for simplifying the calculation of the longitudinal normal stress of thin-walled box beams. When the ratio of diaphragms adjacent space L to the maximum section dimension H is less than 2, the distortion-warping coefficient γ tends to one, which means that the distortion normal stress of the thin-walled box beam tends to zero, and the effect of the section distortion can be ignored.展开更多
In the present paper, a series of hierarchical warping functions is developed to analyze the static and dynamic problems of thin walled composite laminated helicopter rotors composed of several layers with single clos...In the present paper, a series of hierarchical warping functions is developed to analyze the static and dynamic problems of thin walled composite laminated helicopter rotors composed of several layers with single closed cell. This method is the development and extension of the traditional constrained warping theory of thin walled metallic beams, which had been proved very successful since 1940s. The warping distribution along the perimeter of each layer is expanded into a series of successively corrective warping functions with the traditional warping function caused by free torsion or free beading as the first term, and is assumed to be piecewise linear along the thickness direction of layers. The governing equations are derived based upon the variational principle of minimum potential energy for static analysis and Rayleigh Quotient for free vibration analysis. Then the hierarchical finite element method. is introduced to form a,. numerical algorithm. Both static and natural vibration problems of sample box beams axe analyzed with the present method to show the main mechanical behavior of the thin walled composite laminated helicopter rotor.展开更多
基金Project supported by the Scientific and Technological Research Council of Turkey(TUBITAK)via 2209-A Programme。
文摘The warping may become an important factor for the precise transverse vibrations of curved beams.Thus,the first aim of this study is to specify the structural design parameters where the influence of cross-sectional warping becomes great and the first-order shear deformation theory lacks the precision necessary.The outof-plane vibrations of the first-order shear deformation theory are compared with the warping-included vibrations as the curvature and/or thickness increase for symmetric and asymmetric transversely-functionally graded(TFG)curved beams.The second aim is to determine the influence of design parameters on the vibrations.The circular/exact elliptical beams are formed via curved mixed finite elements(MFEs)based on the exact curvature and length.The stress-free conditions are satisfied on three-dimensional(3D)constitutive equations.The variation of functionally graded(FG)material constituents is considered based on the power-law dependence.The cross-sectional warping deformations are defined over a displacement-type FE formulation.The warping-included MFEs(W-MFEs)provide satisfactory 3D structural characteristics with smaller degrees of freedom(DOFs)compared with the brick FEs.The Newmark method is used for the forced vibrations.
文摘Three aluminium channel sections of US standard extruded dimension are mounted as cantilevers with x-axis symmetry. The flexural bending and shear that arise with applied axial torsion are each considered theoretically and numerically in terms of two longitudinal axes of loading not coincident with the shear centre. In particular, the warping displacements, stiffness and stress distributions are calculated for torsion applied to longitudinal axes passing through the section’s centroid and its web centre. The stress conversions derived from each action are superimposed to reveal a net sectional stress distribution. Therein, the influence of the axis position upon the net axial and shear stress distributions is established compared to previous results for each beam when loading is referred to a flexural axis through the shear centre. Within the net stress analysis is, it is shown how the constraint to free warping presented by the end fixing modifies the axial stress. The latter can be identified with the action of a ‘bimoment’ upon each thin-walled section.
文摘Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre.
文摘A theoretical method for static analysis of naturally curved and twisted beams under complicated loads was presented, with special attention devoted to the solving process of governing equations which take into account the effects of torsion-related warping as well as transverse shear deformations. These governing equations, in special cases, can be readily solved and yield the solutions to the problem. The solutions can be used for the analysis of the beams, including the calculation of various internal forces, stresses, strains and displacements. The present theory will be used to investigate the stresses and displacements of a plane curved beam subjected to the action of horizontal and vertical distributed loads. The numerical results obtained by the present theory are found to be in very good agreement with the results of the FEM results. Besides, the present theory is not limited to the beams with a double symmetric cross-section, it can also be extended to those with arbitrary cross-sectional shape.
基金Project supported by the National Natural Science Foundation of China (No.50578021)
文摘The purpose of the paper is to present an exact analytical solution of a spatial curved beam under multiple loads based on the existing theory. The transverse shear deformation and torsion-related warping effects are taken into account. By using this solution, a plane curved beam subjected to uniform vertical loads and torsions is analyzed. Accuracy and efficiency of present theory are demonstrated by comparing its numerical results with Heins' solution. Furthermore, the effects of the transverse shear deformation and torsion-related warping on deformation of the beam are discussed.
基金Specialized Research Fund for the Doctoral Program of Higher Education (No.20070247002)
文摘According to the stationary principle of potential energy and the generalized coordinate method, a stiffness matrix of a beam element considering distortion effects is derived. Using the stiffness matrix of the beam element, a finite element program for computing thin-walled box steel beams is developed. And the program can take the section distortion and warping effects into account. The influences of diaphragm spacing on the mechanical behavior of thin-walled box beams are analyzed by the program. The numerical analysis shows that setting diaphragms have the greatest influence on the distortion normal stress, while there is very little influence on the bending normal stress. Only when the distance of adjacent diaphragms decreases to a certain value, will the distortion normal stress in the thin-walled box beam obviously reduce under the distortion load. Finally, a distortion-warping coefficient γ is introduced for simplifying the calculation of the longitudinal normal stress of thin-walled box beams. When the ratio of diaphragms adjacent space L to the maximum section dimension H is less than 2, the distortion-warping coefficient γ tends to one, which means that the distortion normal stress of the thin-walled box beam tends to zero, and the effect of the section distortion can be ignored.
基金The project supported by the National Natural Science Foundation of China (19932030)
文摘In the present paper, a series of hierarchical warping functions is developed to analyze the static and dynamic problems of thin walled composite laminated helicopter rotors composed of several layers with single closed cell. This method is the development and extension of the traditional constrained warping theory of thin walled metallic beams, which had been proved very successful since 1940s. The warping distribution along the perimeter of each layer is expanded into a series of successively corrective warping functions with the traditional warping function caused by free torsion or free beading as the first term, and is assumed to be piecewise linear along the thickness direction of layers. The governing equations are derived based upon the variational principle of minimum potential energy for static analysis and Rayleigh Quotient for free vibration analysis. Then the hierarchical finite element method. is introduced to form a,. numerical algorithm. Both static and natural vibration problems of sample box beams axe analyzed with the present method to show the main mechanical behavior of the thin walled composite laminated helicopter rotor.