Grafting a number of monomers such as acrylic acid, acrylamide, methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, butyl methacrylate and vinyl acetate onto granular corn starch was carried out resp...Grafting a number of monomers such as acrylic acid, acrylamide, methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, butyl methacrylate and vinyl acetate onto granular corn starch was carried out respectively in aqueous dispersion by using cerie ammonium nitrate as an initiator under nitrogen atmosphere. Conversion of monomer, grafting ratio and grafting efficiency were measured by the method of combining the chemical quantitative analysis with the weight. The adhesive power of the starch graft copolymers to polyester/cotton fiber was evaluated by measuring the breaking strength and elongation of the roving impregnated with the paste. The viscosity change of the size paste before and after grafting was studied. The mechanical properties of polyester/cotton fibre yarn sized by the graft starch were tested. The main conclusions are as follows: (1) monomers which were graft coplymerized onto starch have a significant influence upon the viscosity of the size paste; (2) the adhesive power展开更多
A series of dodecenylsuccinylated starches( DSSs) with different degree of substitution( DS) were prepared via the esterification of dodencenylsuccinic anhydride with hydrolyzed cornstarch in aqueous dispersion for in...A series of dodecenylsuccinylated starches( DSSs) with different degree of substitution( DS) were prepared via the esterification of dodencenylsuccinic anhydride with hydrolyzed cornstarch in aqueous dispersion for investigating the influences of starch dodecenylsuccinylation upon the performances such as apparent viscosity and surface tension of starch paste, film behaviors,and adhesion to fibers for warp sizing. It was found that the dodecenylsuccinylation was able to reduce the surface tension of cooked starch paste and enhance the adhesion of starch to polyester fibers. It was also capable of depressing the brittleness of native starch and improving the mechanical behaviours such as breaking elongation and work-to-break of starch film. Initial increase in DS level of dodecenylsuccinylation enhanced these positive effects,while excessively increasing the level resulted in marked reduction in tensile strength of starch film and significant decrement in reaction efficiency. X-ray diffraction patterns of starch films showed the dodecenylsuccinates derivatized onto the backbones of starch depressed the degree of crystallinity of starch film. Based on the paste behaviors, adhesion, and film properties, the dodecenylsuccinylation level is recommended in a range of 0. 015-0. 025 for sizing polyester warps.展开更多
A series of poly ( 2-ethylhexyl acrylate-co-acrylic acid ) s ( P (2-EHA-co-AA) )s with different mole contents of 2-ethylhexyl acrylate ( 2-EHA ) were synthesized through free radical copolymerization in ethan...A series of poly ( 2-ethylhexyl acrylate-co-acrylic acid ) s ( P (2-EHA-co-AA) )s with different mole contents of 2-ethylhexyl acrylate ( 2-EHA ) were synthesized through free radical copolymerization in ethanol for investigating the influences of copolymer composition upon the performance such as apparent viscosity, film behaviors, and adhesion to fibers for warp sizing. The content of 2-EHA was varied from 80 % to 40 %. The adhesion was estimated by measuring tensile strength and work-to-break of impregnated roving. The film behaviors were evaluated in terms of breaking strength, breaking elongation, work-to-break, and flex- fatigue resistance. It was observed that the viscosity, adhesion, and film behaviors of the copolymers strongly depended on the content of 2-EHA. Excessively increasing or decreasing the content of 2-EHA units incorporated into the copolymeric chains reduces the serviceability of P(2-EHA-co-AA) in warp sizing. The adhesion and film behaviors of the copolymcr reach their maximal values at mole content of 50 % simultaneously. Therefore, the copolymer used as sizing agent should be synthesized under equal mole of 2-EHA and AA in monomer formulation.展开更多
An attempt has been made to improve the paste stabilities both in viscosity of a hot starch paste and in phase of a starch-polyvinyl alcohol blend paste for warp sizing. The phase stability was evaluated in terms of t...An attempt has been made to improve the paste stabilities both in viscosity of a hot starch paste and in phase of a starch-polyvinyl alcohol blend paste for warp sizing. The phase stability was evaluated in terms of the initial demixing time, and the volume percentage of polyvinyl alcohol separated. It was found that starch cross-linking is harmful to the phase stability of a starch-polyvinyl alcohol blend paste no matter what a type of polyvinyl alcohol is used, although the cross-linking is an effective technique for stabilizing the viscosity of a hot starch paste. The separation rate and extent all increase with the increase in the cross-linking degree of starch. However, this defect can be eliminated through introducing quaternary ammonium groups into crosslinked starch molecules. Evident effect can be achieved when the degree of substitution is as less as 0.021. Generally, increase in the DS reduces the separation rate and extent, and thereby raising the phase stability. Moreover, the effects of both starch content and PVA type on the separation are also considered. Cationization after starch cross-linking shows improved stabilities both in viscosity and phase.展开更多
Radical copolymerization of acrylic acid(AA)with acrylamide(AM)or acrylamide/acrylonitrile(AM/AN)was initiated with ammonium persulfate as initiator to produce acrylic copolymers such as bicopolymer poly(AM-co-AA)and ...Radical copolymerization of acrylic acid(AA)with acrylamide(AM)or acrylamide/acrylonitrile(AM/AN)was initiated with ammonium persulfate as initiator to produce acrylic copolymers such as bicopolymer poly(AM-co-AA)and tercopolymer poly(AM-co-AN-co-AA)for revealing the effects of the structural units of the copolymers on the adhesion of the copolymers to polyester or cotton fibers for warp sizing.The adhesion was evaluated in terms of tensile strength and work-to-break of a roving impregnated with the copolymer solution.It was found that the adhesion strongly depended on type and amount of the units incorporated into the copolymeric chains.Whether the fiber is cotton or polyester,the adhesion of the bicopolymer poly(AM-co-AA)is greater than that of polyacrylic acid or polyacyamide.Excessively increasing the amount of AM or AA unit in poly(AM-co-AA)lowers the adhesion.To enhance the adhesion of the bicopolymer,a favorable mole ratio of AM to AA is 70/30.Based on this mole ratio,incorporation of acrylonitrile units into poly(AM-co-AA)to form tercopolymer enhances the adhesion.展开更多
The influences of carboxymethyl starch used as stabilizer upon the stability of native cornstarchpolyvinyl alcohol blend pastes for warp sizing have been investigated. The effect of the modified starch on the paste st...The influences of carboxymethyl starch used as stabilizer upon the stability of native cornstarchpolyvinyl alcohol blend pastes for warp sizing have been investigated. The effect of the modified starch on the paste stability was evaluated in terms of the initial demixing time and the volume percentage of separated starch. The carboxymethyl starch with a series of different degrees of substitution was prepared in ethanol dispersion by varying the amount of monochloroacetic acid reacted with refined native cornstarch. The paste stability strongly depends on the modification extent and amount of carboxymethyl starch used, and on native starch content in the paste. Increase in the modification extent and/or the amount of the modified starch effectively retards the phase separation and reduces the separation extent of native cornstarch-polyvinyl alcohol blend pastes.Moreover, the mechanism and favorable modification extent of carboxymethyl starch for enhancing paste stability are also investigated and discussed.展开更多
A new method for the pretreatment of starch by etherification was developed to eliminate the problems of lower grafting efficiency associated with the preparation of starch graft copolymers as warp sizing agents. The ...A new method for the pretreatment of starch by etherification was developed to eliminate the problems of lower grafting efficiency associated with the preparation of starch graft copolymers as warp sizing agents. The etherification of starch with allyl chloride was investigated in order to effectively enhance the reaction efficiency. The tecimological variables of the reaction considered for evaluating the etherification included sodium hydroxide amount, water content in water-isopropyl alcohol medium, allyl chloride concentration, reaction temperature and reaction time. The experimental result demonstrated that the variables considered showed evident effect on the reaction efficiency. For the etherification, a condition of 20% for the water content, 1.5:1 for the molar ratio of sodium hydroxide to allyl chloride, and at 30℃ under 24 h reaction is sufficient to retain the reaction efficiency above 50%. Furthermore, a contrast test demonstrated that the graft efficiency can be increased with the etherification pretreatment.展开更多
The usability of polyoxyethylene stearate with 10 ethylene epoxides(POES 10) as lubricant in warp sizing was investigated for replacing sizing cream in order to prevent blockage of paste delivery tube.The influences o...The usability of polyoxyethylene stearate with 10 ethylene epoxides(POES 10) as lubricant in warp sizing was investigated for replacing sizing cream in order to prevent blockage of paste delivery tube.The influences of POES 10 and sizing cream upon the adhesion of starch to fibers and the performances of starch film were measured and compared.Then,the usability of POES 10 as lubricant was evaluated through the comparison between POES 10 and sizing cream in tensile behaviors,abrasion resistance,and hairiness of sized cotton yarns.The experimental observation demonstrates that the influence of POES 10 upon the adhesion is similar to that of sizing cream.POES 10 is superior to sizing cream in tensile strength and breaking elongation of starch film when mass content of lubricants is equal to or exceeds 2%.Incorporating POES 10 into starch makes starch film more resistant to wear.Furthermore,POES 10 is preferred to sizing cream in the increase in tensile strength,loss in elongation,and abrasion resistance of sized cotton yarns.Using POES 10 as lubricant in size formulation is favorable to the decrease of longer hairs on sized yarns.POES 10 exhibits potential use during cotton warp sizing for replacing sizing cream.展开更多
With the evolution of converter fed machines (CFMs), it becomes important to evaluate the power potential of such machines of vastly different topologies with a variety of waveforms of back emf and current. It is base...With the evolution of converter fed machines (CFMs), it becomes important to evaluate the power potential of such machines of vastly different topologies with a variety of waveforms of back emf and current. It is based on the generalized sizing equations and permits the evaluation of the main dimensions with respect to the power of those machines. In this paper, a general approach is presented to extend the evaluation method of machine power density to the switched reluctance (SR) machine, and furthermore to compare the power production capability between the SR machine and the well known squirrel cage induction machine.展开更多
Based on the concept of the converter fed machines (CFMs), an optimal machine design can be considered as the best match of the machine topology, the power electronic converter and the performance specifications. To e...Based on the concept of the converter fed machines (CFMs), an optimal machine design can be considered as the best match of the machine topology, the power electronic converter and the performance specifications. To evaluate power production potentials of machines with various topologies with different waveforms of back emf and current, the generalized sizing equations and the power density equation are needed to evaluate the main dimensions and the power of such machines. In this paper. a general approach is presented to develop and to discuss these equations. Sample applications of the generalized sizing and power density equations are utilized to evaluate the induction machine and the double-salient permanent magnet (DSPM) machine.展开更多
With the cvolution of various high powerr-density machines, it beeomes important to optimize the power potential of machines of vastly different topologies with a variety of waveforms of back emf and current. The appr...With the cvolution of various high powerr-density machines, it beeomes important to optimize the power potential of machines of vastly different topologies with a variety of waveforms of back emf and current. The approach of tins paper is based oil the gencral-purpose sizing equations. which permit the optinlization method of machine power density to be applied to the axial-flux toroidal permanent-magnet (AFTPM) machine, and,furthermore, the power-production capabilities of the AFTPM machinc and the wen-known squirrel-cage indution machine are compared.展开更多
Quantitative relationship between nanosecond pulsed laser parameters and the characteristics of laser-generated ultrasonic waves in polycrystalline materials was evaluated.The high energy of the pulsed laser with a la...Quantitative relationship between nanosecond pulsed laser parameters and the characteristics of laser-generated ultrasonic waves in polycrystalline materials was evaluated.The high energy of the pulsed laser with a large irradiation spot simultaneously generated ultrasonic longitudinal and shear waves at the epicenter under the slight ablation regime.An optimized denoising technique based on wavelet thresholding and variational mode decomposition was applied to reduce noise in shear waves with a low signal-to-noise ratio.An approach for characterizing grain size was proposed using spectral central frequency ratio(SCFR)based on time-frequency analysis.The results demonstrate that the generation regime of ultrasonic waves is not solely determined by the laser power density;even at high power densities,a high energy with a large spot can generate an ultrasonic waveform dominated by the thermoelastic effect.This is ascribed to the intensification of the thermoelastic effect with the proportional increase in laser irradiation spot area for a given laser power density.Furthermore,both longitudinal and shear wave SCFRs are linearly related to grain size in polycrystalline materials;however,the shear wave SCFR is more sensitive to finer-grained materials.This study holds great significance for evaluating metal material properties using laser ultrasound.展开更多
Discrete dislocation dynamics(DDD)simulations reveal the evolution of dislocation structures and the interaction of dislocations.This study investigated the compression behavior of single-crystal copper micropillars u...Discrete dislocation dynamics(DDD)simulations reveal the evolution of dislocation structures and the interaction of dislocations.This study investigated the compression behavior of single-crystal copper micropillars using fewshot machine learning with data provided by DDD simulations.Two types of features are considered:external features comprising specimen size and loading orientation and internal features involving dislocation source length,Schmid factor,the orientation of the most easily activated dislocations and their distance from the free boundary.The yielding stress and stress-strain curves of single-crystal copper micropillar are predicted well by incorporating both external and internal features of the sample as separate or combined inputs.It is found that the machine learning accuracy predictions for single-crystal micropillar compression can be improved by incorporating easily activated dislocation features with external features.However,the effect of easily activated dislocation on yielding is less important compared to the effects of specimen size and Schmid factor which includes information of orientation but becomes more evident in small-sized micropillars.Overall,incorporating internal features,especially the information of most easily activated dislocations,improves predictive capabilities across diverse sample sizes and orientations.展开更多
Aiming at the problems of the traditional method of assessing distribution of particle size in bench blasting, a support vector machines (SVMs) regression methodology was used to predict the mean particle size (X50...Aiming at the problems of the traditional method of assessing distribution of particle size in bench blasting, a support vector machines (SVMs) regression methodology was used to predict the mean particle size (X50) resulting from rock blast fragmentation in various mines based on the statistical learning theory. The data base consisted of blast design parameters, explosive parameters, modulus of elasticity and in-situ block size. The seven input independent variables used for the SVMs model for the prediction of X50 of rock blast fragmentation were the ratio of bench height to drilled burden (H/B), ratio of spacing to burden (S/B), ratio of burden to hole diameter (B/D), ratio of stemming to burden (T/B), powder factor (Pf), modulus of elasticity (E) and in-situ block size (XB). After using the 90 sets of the measured data in various mines and rock formations in the world for training and testing, the model was applied to 12 another blast data for validation of the trained support vector regression (SVR) model. The prediction results of SVR were compared with those of artificial neural network (ANN), multivariate regression analysis (MVRA) models, conventional Kuznetsov method and the measured X50 values. The proposed method shows promising results and the prediction accuracy of SVMs model is acceptable.展开更多
To clarify the effect of SnO2 particle size on the arc erosion behavior of AgSnO2 contact material, Ag?4%SnO2 (mass fraction) contact materials with different sizes of SnO2 particles were fabricated by powder metallur...To clarify the effect of SnO2 particle size on the arc erosion behavior of AgSnO2 contact material, Ag?4%SnO2 (mass fraction) contact materials with different sizes of SnO2 particles were fabricated by powder metallurgy. The microstructure of Ag?4%SnO2 contact materials was characterized, and the relative density, hardness and electrical conductivity were measured. The arc erosion of Ag?4%SnO2 contact materials was tested, the arc duration and mass loss before and after arc erosion were determined, the surface morphologies and compositions of Ag?4%SnO2 contact materials after arc erosion were characterized, and the arc erosion mechanism of AgSnO2 contact materials was discussed. The results show that fine SnO2 particle is beneficial for the improvement of the relative density and hardness, but decreases the electrical conductivity. With the decrease of SnO2 particle size, Ag?4%SnO2contact material presents shorter arc duration, less mass loss, larger erosion area and shallower arc erosion pits.展开更多
The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compressio...The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.展开更多
基金This paper was financially supported by the doctoral foundation of Colleges and Universities
文摘Grafting a number of monomers such as acrylic acid, acrylamide, methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, butyl methacrylate and vinyl acetate onto granular corn starch was carried out respectively in aqueous dispersion by using cerie ammonium nitrate as an initiator under nitrogen atmosphere. Conversion of monomer, grafting ratio and grafting efficiency were measured by the method of combining the chemical quantitative analysis with the weight. The adhesive power of the starch graft copolymers to polyester/cotton fiber was evaluated by measuring the breaking strength and elongation of the roving impregnated with the paste. The viscosity change of the size paste before and after grafting was studied. The mechanical properties of polyester/cotton fibre yarn sized by the graft starch were tested. The main conclusions are as follows: (1) monomers which were graft coplymerized onto starch have a significant influence upon the viscosity of the size paste; (2) the adhesive power
基金the Fund of Anhui Province Science Research Projects,China(No.1106b0105062)the Research Foundation Program of Scientific and Technological Innovation Team of College and University at the Provincial Level of Anhui,China(No.TD200710)
文摘A series of dodecenylsuccinylated starches( DSSs) with different degree of substitution( DS) were prepared via the esterification of dodencenylsuccinic anhydride with hydrolyzed cornstarch in aqueous dispersion for investigating the influences of starch dodecenylsuccinylation upon the performances such as apparent viscosity and surface tension of starch paste, film behaviors,and adhesion to fibers for warp sizing. It was found that the dodecenylsuccinylation was able to reduce the surface tension of cooked starch paste and enhance the adhesion of starch to polyester fibers. It was also capable of depressing the brittleness of native starch and improving the mechanical behaviours such as breaking elongation and work-to-break of starch film. Initial increase in DS level of dodecenylsuccinylation enhanced these positive effects,while excessively increasing the level resulted in marked reduction in tensile strength of starch film and significant decrement in reaction efficiency. X-ray diffraction patterns of starch films showed the dodecenylsuccinates derivatized onto the backbones of starch depressed the degree of crystallinity of starch film. Based on the paste behaviors, adhesion, and film properties, the dodecenylsuccinylation level is recommended in a range of 0. 015-0. 025 for sizing polyester warps.
基金Open Project Program of Key Laboratory of Eco-Textiles,Ministry of Education,China(No.KLET0617)
文摘A series of poly ( 2-ethylhexyl acrylate-co-acrylic acid ) s ( P (2-EHA-co-AA) )s with different mole contents of 2-ethylhexyl acrylate ( 2-EHA ) were synthesized through free radical copolymerization in ethanol for investigating the influences of copolymer composition upon the performance such as apparent viscosity, film behaviors, and adhesion to fibers for warp sizing. The content of 2-EHA was varied from 80 % to 40 %. The adhesion was estimated by measuring tensile strength and work-to-break of impregnated roving. The film behaviors were evaluated in terms of breaking strength, breaking elongation, work-to-break, and flex- fatigue resistance. It was observed that the viscosity, adhesion, and film behaviors of the copolymers strongly depended on the content of 2-EHA. Excessively increasing or decreasing the content of 2-EHA units incorporated into the copolymeric chains reduces the serviceability of P(2-EHA-co-AA) in warp sizing. The adhesion and film behaviors of the copolymcr reach their maximal values at mole content of 50 % simultaneously. Therefore, the copolymer used as sizing agent should be synthesized under equal mole of 2-EHA and AA in monomer formulation.
文摘An attempt has been made to improve the paste stabilities both in viscosity of a hot starch paste and in phase of a starch-polyvinyl alcohol blend paste for warp sizing. The phase stability was evaluated in terms of the initial demixing time, and the volume percentage of polyvinyl alcohol separated. It was found that starch cross-linking is harmful to the phase stability of a starch-polyvinyl alcohol blend paste no matter what a type of polyvinyl alcohol is used, although the cross-linking is an effective technique for stabilizing the viscosity of a hot starch paste. The separation rate and extent all increase with the increase in the cross-linking degree of starch. However, this defect can be eliminated through introducing quaternary ammonium groups into crosslinked starch molecules. Evident effect can be achieved when the degree of substitution is as less as 0.021. Generally, increase in the DS reduces the separation rate and extent, and thereby raising the phase stability. Moreover, the effects of both starch content and PVA type on the separation are also considered. Cationization after starch cross-linking shows improved stabilities both in viscosity and phase.
基金Open Research Foundation of "Anhui Key Laboratory of Textile Materials",China(No.2006F2003)
文摘Radical copolymerization of acrylic acid(AA)with acrylamide(AM)or acrylamide/acrylonitrile(AM/AN)was initiated with ammonium persulfate as initiator to produce acrylic copolymers such as bicopolymer poly(AM-co-AA)and tercopolymer poly(AM-co-AN-co-AA)for revealing the effects of the structural units of the copolymers on the adhesion of the copolymers to polyester or cotton fibers for warp sizing.The adhesion was evaluated in terms of tensile strength and work-to-break of a roving impregnated with the copolymer solution.It was found that the adhesion strongly depended on type and amount of the units incorporated into the copolymeric chains.Whether the fiber is cotton or polyester,the adhesion of the bicopolymer poly(AM-co-AA)is greater than that of polyacrylic acid or polyacyamide.Excessively increasing the amount of AM or AA unit in poly(AM-co-AA)lowers the adhesion.To enhance the adhesion of the bicopolymer,a favorable mole ratio of AM to AA is 70/30.Based on this mole ratio,incorporation of acrylonitrile units into poly(AM-co-AA)to form tercopolymer enhances the adhesion.
基金It was financially supported by Science Research Foundation of Southern Yangtze University
文摘The influences of carboxymethyl starch used as stabilizer upon the stability of native cornstarchpolyvinyl alcohol blend pastes for warp sizing have been investigated. The effect of the modified starch on the paste stability was evaluated in terms of the initial demixing time and the volume percentage of separated starch. The carboxymethyl starch with a series of different degrees of substitution was prepared in ethanol dispersion by varying the amount of monochloroacetic acid reacted with refined native cornstarch. The paste stability strongly depends on the modification extent and amount of carboxymethyl starch used, and on native starch content in the paste. Increase in the modification extent and/or the amount of the modified starch effectively retards the phase separation and reduces the separation extent of native cornstarch-polyvinyl alcohol blend pastes.Moreover, the mechanism and favorable modification extent of carboxymethyl starch for enhancing paste stability are also investigated and discussed.
基金Open Project Programof Key Laboratory of Eco-textiles(Jiangnan University),Ministry of Education,China.(No.KLET0617)
文摘A new method for the pretreatment of starch by etherification was developed to eliminate the problems of lower grafting efficiency associated with the preparation of starch graft copolymers as warp sizing agents. The etherification of starch with allyl chloride was investigated in order to effectively enhance the reaction efficiency. The tecimological variables of the reaction considered for evaluating the etherification included sodium hydroxide amount, water content in water-isopropyl alcohol medium, allyl chloride concentration, reaction temperature and reaction time. The experimental result demonstrated that the variables considered showed evident effect on the reaction efficiency. For the etherification, a condition of 20% for the water content, 1.5:1 for the molar ratio of sodium hydroxide to allyl chloride, and at 30℃ under 24 h reaction is sufficient to retain the reaction efficiency above 50%. Furthermore, a contrast test demonstrated that the graft efficiency can be increased with the etherification pretreatment.
基金Research Foundation Program of Scientific and Technological Innovation Team of College and University at the Provincial Level of Anhui,China (No.TD200710)
文摘The usability of polyoxyethylene stearate with 10 ethylene epoxides(POES 10) as lubricant in warp sizing was investigated for replacing sizing cream in order to prevent blockage of paste delivery tube.The influences of POES 10 and sizing cream upon the adhesion of starch to fibers and the performances of starch film were measured and compared.Then,the usability of POES 10 as lubricant was evaluated through the comparison between POES 10 and sizing cream in tensile behaviors,abrasion resistance,and hairiness of sized cotton yarns.The experimental observation demonstrates that the influence of POES 10 upon the adhesion is similar to that of sizing cream.POES 10 is superior to sizing cream in tensile strength and breaking elongation of starch film when mass content of lubricants is equal to or exceeds 2%.Incorporating POES 10 into starch makes starch film more resistant to wear.Furthermore,POES 10 is preferred to sizing cream in the increase in tensile strength,loss in elongation,and abrasion resistance of sized cotton yarns.Using POES 10 as lubricant in size formulation is favorable to the decrease of longer hairs on sized yarns.POES 10 exhibits potential use during cotton warp sizing for replacing sizing cream.
文摘With the evolution of converter fed machines (CFMs), it becomes important to evaluate the power potential of such machines of vastly different topologies with a variety of waveforms of back emf and current. It is based on the generalized sizing equations and permits the evaluation of the main dimensions with respect to the power of those machines. In this paper, a general approach is presented to extend the evaluation method of machine power density to the switched reluctance (SR) machine, and furthermore to compare the power production capability between the SR machine and the well known squirrel cage induction machine.
文摘Based on the concept of the converter fed machines (CFMs), an optimal machine design can be considered as the best match of the machine topology, the power electronic converter and the performance specifications. To evaluate power production potentials of machines with various topologies with different waveforms of back emf and current, the generalized sizing equations and the power density equation are needed to evaluate the main dimensions and the power of such machines. In this paper. a general approach is presented to develop and to discuss these equations. Sample applications of the generalized sizing and power density equations are utilized to evaluate the induction machine and the double-salient permanent magnet (DSPM) machine.
文摘With the cvolution of various high powerr-density machines, it beeomes important to optimize the power potential of machines of vastly different topologies with a variety of waveforms of back emf and current. The approach of tins paper is based oil the gencral-purpose sizing equations. which permit the optinlization method of machine power density to be applied to the axial-flux toroidal permanent-magnet (AFTPM) machine, and,furthermore, the power-production capabilities of the AFTPM machinc and the wen-known squirrel-cage indution machine are compared.
基金supported in part by the Natural Science Foundation of Shandong Province,China (Grant No.ZR2023ME073)the National Natural Science Foundation of China (Grant No.51805304)+1 种基金the Education Department of Shandong Province,China (Grant No.2022KJ130)Qilu University of Technology (Shandong Academy of Sciences),China (Grant Nos.2023PY009,2021JC02008 and 2022GH005)。
文摘Quantitative relationship between nanosecond pulsed laser parameters and the characteristics of laser-generated ultrasonic waves in polycrystalline materials was evaluated.The high energy of the pulsed laser with a large irradiation spot simultaneously generated ultrasonic longitudinal and shear waves at the epicenter under the slight ablation regime.An optimized denoising technique based on wavelet thresholding and variational mode decomposition was applied to reduce noise in shear waves with a low signal-to-noise ratio.An approach for characterizing grain size was proposed using spectral central frequency ratio(SCFR)based on time-frequency analysis.The results demonstrate that the generation regime of ultrasonic waves is not solely determined by the laser power density;even at high power densities,a high energy with a large spot can generate an ultrasonic waveform dominated by the thermoelastic effect.This is ascribed to the intensification of the thermoelastic effect with the proportional increase in laser irradiation spot area for a given laser power density.Furthermore,both longitudinal and shear wave SCFRs are linearly related to grain size in polycrystalline materials;however,the shear wave SCFR is more sensitive to finer-grained materials.This study holds great significance for evaluating metal material properties using laser ultrasound.
基金supported by the National Natural Science Foundation of China(Grant Nos.12192214 and 12222209).
文摘Discrete dislocation dynamics(DDD)simulations reveal the evolution of dislocation structures and the interaction of dislocations.This study investigated the compression behavior of single-crystal copper micropillars using fewshot machine learning with data provided by DDD simulations.Two types of features are considered:external features comprising specimen size and loading orientation and internal features involving dislocation source length,Schmid factor,the orientation of the most easily activated dislocations and their distance from the free boundary.The yielding stress and stress-strain curves of single-crystal copper micropillar are predicted well by incorporating both external and internal features of the sample as separate or combined inputs.It is found that the machine learning accuracy predictions for single-crystal micropillar compression can be improved by incorporating easily activated dislocation features with external features.However,the effect of easily activated dislocation on yielding is less important compared to the effects of specimen size and Schmid factor which includes information of orientation but becomes more evident in small-sized micropillars.Overall,incorporating internal features,especially the information of most easily activated dislocations,improves predictive capabilities across diverse sample sizes and orientations.
基金Foundation item:Project (2006BAB02A02) supported by the National Key Technology R&D Program during the 11th Five-year Plan Period of ChinaProject (CX2011B119) supported by the Graduated Students' Research and Innovation Fund of Hunan Province, ChinaProject (2009ssxt230) supported by the Central South University Innovation Fund,China
文摘Aiming at the problems of the traditional method of assessing distribution of particle size in bench blasting, a support vector machines (SVMs) regression methodology was used to predict the mean particle size (X50) resulting from rock blast fragmentation in various mines based on the statistical learning theory. The data base consisted of blast design parameters, explosive parameters, modulus of elasticity and in-situ block size. The seven input independent variables used for the SVMs model for the prediction of X50 of rock blast fragmentation were the ratio of bench height to drilled burden (H/B), ratio of spacing to burden (S/B), ratio of burden to hole diameter (B/D), ratio of stemming to burden (T/B), powder factor (Pf), modulus of elasticity (E) and in-situ block size (XB). After using the 90 sets of the measured data in various mines and rock formations in the world for training and testing, the model was applied to 12 another blast data for validation of the trained support vector regression (SVR) model. The prediction results of SVR were compared with those of artificial neural network (ANN), multivariate regression analysis (MVRA) models, conventional Kuznetsov method and the measured X50 values. The proposed method shows promising results and the prediction accuracy of SVMs model is acceptable.
基金Project(51274163)supported by the National Natural Science Foundation of ChinaProject(13JS076)supported by the Key Laboratory Research Program of Shaanxi Province,China+1 种基金Project(2012KCT-25)supported by the Pivot Innovation Team of Shaanxi Electrical Materials and Infiltration Technique,ChinaProject(2011HBSZS009)supported by the Special Foundation of Key Disciplines,China
文摘To clarify the effect of SnO2 particle size on the arc erosion behavior of AgSnO2 contact material, Ag?4%SnO2 (mass fraction) contact materials with different sizes of SnO2 particles were fabricated by powder metallurgy. The microstructure of Ag?4%SnO2 contact materials was characterized, and the relative density, hardness and electrical conductivity were measured. The arc erosion of Ag?4%SnO2 contact materials was tested, the arc duration and mass loss before and after arc erosion were determined, the surface morphologies and compositions of Ag?4%SnO2 contact materials after arc erosion were characterized, and the arc erosion mechanism of AgSnO2 contact materials was discussed. The results show that fine SnO2 particle is beneficial for the improvement of the relative density and hardness, but decreases the electrical conductivity. With the decrease of SnO2 particle size, Ag?4%SnO2contact material presents shorter arc duration, less mass loss, larger erosion area and shallower arc erosion pits.
基金financially supported by the National Natural Science Foundation of China(Nos.52174092,51904290,and 52374147)the Natural Science Foundation of Jiangsu Province,China(No.BK20220157)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.2022YCPY0202)the National Key Research and Development Program of China(No.2023YFC3804204)the Major Program of Xinjiang Uygur Autonomous Region S cience and Technology(No.2023A01002)。
文摘The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.