A new geometric model of Multiaxial Warp-Knitted (MWK) performs, which is based on the experimental observations and analysis of basic stitch, is developed to relate the geometric parameters and process variables. The...A new geometric model of Multiaxial Warp-Knitted (MWK) performs, which is based on the experimental observations and analysis of basic stitch, is developed to relate the geometric parameters and process variables. The fiber volume fraction and fibre orientation of MWK reinforced composites are described in terms of structural and processing parameters in the model. And this model provides a basis for the prediction of mechanical behavior of the MWK reinforced composites.展开更多
In this study, 3D computer modeling of simple warp-knitted structures is achieved based on 3D model of warp-knitted loops. Firstly, according to the studying on the geometric structure of warp-knitted loops, Goktepe'...In this study, 3D computer modeling of simple warp-knitted structures is achieved based on 3D model of warp-knitted loops. Firstly, according to the studying on the geometric structure of warp-knitted loops, Goktepe's 3D solid yarn model is developed, and the dimensions of the warp-knitted loops are obtained; then 3D models of stitch defined by eleven given points and in-lay defined by five given points are built with the method of Non-Uniform Rational B-Spline (NURBS) curves and surfaces. Secondly, according to the chain notations of warp-knitted structures, the loop's shape can be decided, and with the 3D models the loops can be connected freely and smoothly in some special warp-knitted structures, such as miss-lapping and two- course in-lay. At last, with the tools of Visual C ++ and OpenGL, computer 3D simulation of two-bar warp-knitted fabrics is successfully realized, taking the factor of fabric light and materials into 3D structural model.展开更多
This paper reports the evolution of textile structure and mechanical properties of vascular prosthesis in the level of the whole prosthesis and the constituent filaments with respect to the manufacturing process. The ...This paper reports the evolution of textile structure and mechanical properties of vascular prosthesis in the level of the whole prosthesis and the constituent filaments with respect to the manufacturing process. The tubular wall of the prosthesis is divided circumferentially into three zones; basic line (BL), remeshing line ( RL) and guide line ( GL). Some heterogeneity has been observed on the tubular wall in terms of stitch structure of the prosthesis and linear density of the constituent filaments. The breaking position of the prosthesis under circumferential tensile localizes preferentially in remeshing line that is the weakest zone by warp knitting with double needle bed. Furthermore, the statistical differences of the mechanical properties of the filaments of zone RL, GL and BL have been confirmed too. It is predictable that the deterioration of prosthesis, under physiological loads (periodical pulse blood pressure etc.), could happen firstly in the weaker zone in vivo.展开更多
The in-plane tensile behaviors of bi-axial warp-knitted(BWK) composites under quasi-static and high strain rates loading were experimentally analyzed in this article. The tensile tests were conducted along warp direct...The in-plane tensile behaviors of bi-axial warp-knitted(BWK) composites under quasi-static and high strain rates loading were experimentally analyzed in this article. The tensile tests were conducted along warp direction( 0°) and weft direction( 90°) at quasi-static rate of 0. 001 s^(-1) and high strain rates ranging from 1 450 to 2 540 s^(-1),respectively. It is found that the significant strain rate sensitivity can be observed in the stress-strain curves of BWK composites. The fracture morphologies of BWK composites demonstrate that the tensile failure modes are shear failure and fiber breakage under the quasi-static testing condition while interface failure and fibers pullout are at high strain rates.展开更多
Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lackingunique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life s...Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lackingunique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life scenesseverely undermines the reliability of supervised learning methods in image stitching. Furthermore, existing deeplearning architectures designed for image stitching are often too bulky to be deployed on mobile and peripheralcomputing devices. To address these challenges, this study proposes a novel unsupervised image stitching methodbased on the YOLOv8 (You Only Look Once version 8) framework that introduces deep homography networksand attentionmechanisms. Themethodology is partitioned into three distinct stages. The initial stage combines theattention mechanism with a pooling pyramid model to enhance the detection and recognition of compact objectsin images, the task of the deep homography networks module is to estimate the global homography of the inputimages consideringmultiple viewpoints. The second stage involves preliminary stitching of the masks generated inthe initial stage and further enhancement through weighted computation to eliminate common stitching artifacts.The final stage is characterized by adaptive reconstruction and careful refinement of the initial stitching results.Comprehensive experiments acrossmultiple datasets are executed tometiculously assess the proposed model. Ourmethod’s Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM) improved by 10.6%and 6%. These experimental results confirm the efficacy and utility of the presented model in this paper.展开更多
Based on classic theory of elastic rod,the warp-knitted loop geometry in plane is independent of yarn properties,while there is a certain gap between the geometrical model and the actual fabrics.According to this prob...Based on classic theory of elastic rod,the warp-knitted loop geometry in plane is independent of yarn properties,while there is a certain gap between the geometrical model and the actual fabrics.According to this problem,further analysis of loop geometry is done based on the theory of elastic rod with theoretical calculation and experiments.The theoretical analysis found that the distance between the contacted points at the loop root affected the loop geometry,and the distance was affected by the ratio of bending rigidity and the friction between yarns.The experiments,forming simple loop by taking the yarn as an elastic rod,found that the bending rigidity affected the loop geometry.Then the relationships between warp-knitted loop geometry in plane of metallic fabrics and wires properties were studied.The results show that metallic fabrics are more suitable for the theory of elastic rod;the friction and bending rigidity of wire yarns affect the loop geometry in plane.Also,the elongation of yarn affects the loop geometry in the actual warp-knitted fabric.展开更多
Stitch density is one of the critical quality parameters of knit fabrics. This parameter is closely related to other physical quality parameters like fabric weight, fabric tightness factor, fiber types, blend ratio, y...Stitch density is one of the critical quality parameters of knit fabrics. This parameter is closely related to other physical quality parameters like fabric weight, fabric tightness factor, fiber types, blend ratio, yarn diameter and linear density, and fabric structure. Selecting stitch density (wales per inch, course per inch) is essential to getting the appropriate fabric weight and desired quality. Usually, no rules or assumptions exist to get the desired stitch density in the finished fabric stage. Fifteen types of blended knit fabrics were prepared to conduct the study. The varying percentages of cotton, polyester, and elastane are incorporated in the blends. Regression analysis and regression ANOVA tests were done to predict the stitch density of finished fabrics. A suitable regression equation is established to get the desired results. The study also found that the stitch density value in the finished stage fabric decreases by approximately 15% compared to the stitch density in the grey fabric stage. This study will help the fabric manufacturers get the finished fabric stitch density in advance by utilizing the grey fabric stitch density data set. The author expects this research to benefit the knitting and dyeing industry, new researchers, and advanced researchers.展开更多
A multi layer gridless area router is reported.Based on corner stitching,this router adopts tile expansion to explore path for each net.A heuristic method that penalizes nodes deviating from the destination is devise...A multi layer gridless area router is reported.Based on corner stitching,this router adopts tile expansion to explore path for each net.A heuristic method that penalizes nodes deviating from the destination is devised to accelerate the algorithm.Besides,an enhanced interval tree is used to manage the intermediate data structure.In order to improve the completion rate of routing,a new gridless rip up and rerouting algorithm is proposed.The experimental results indicate that the completion rate is improved after the rip up and reroute process and the speed of this algorithm is satisfactory.展开更多
According to the bio-characteristics of the lower and upper cavity surfaces of dental restoration, a stitching approach is proposed based on a virtual zipper working mechanism and a minimization of the surface total c...According to the bio-characteristics of the lower and upper cavity surfaces of dental restoration, a stitching approach is proposed based on a virtual zipper working mechanism and a minimization of the surface total curvature energy, which is used to resolve the stitching problems existing during computer-aided design for dental restorations. First, the two boundaries corresponding to the lower and upper surfaces are triangulated based on the zipper working mechanism to generate the initial stitching surface patch, of which the edges are distributed uniformly between the boundaries. Secondly, the initial stitching surface patch is subdivided and deformed to reconstruct an optimized surface patch according to the bio-characteristics of the teeth. The optimized surface patch is minimally distinguishable from the surrounding mesh in smoothness and density, and it can stitch the upper and lower cavity surfaces naturally. The experimental results show that the dental restorations obtained by the proposed method can satisfy both the shape aesthetic and the fitting accuracy, and meet the requirements of clinical oral medicine.展开更多
Stitch welding of plate covered skeleton structure of Ti-6Al-4V titanium alloys has a variety of applications in aerospace vehicle manufacture. The laser stitch welding of Ti-6Al-4V titanium alloys was carried out by ...Stitch welding of plate covered skeleton structure of Ti-6Al-4V titanium alloys has a variety of applications in aerospace vehicle manufacture. The laser stitch welding of Ti-6Al-4V titanium alloys was carried out by a 4 kW ROFIN fiber laser. Influences of laser welding parameters on the macroscopic geometry, porosity, microstructure and mechanical properties of the stitch welded seams were investigated by digital microscope, optical microscope, scanning electron microscope and universal tensile testing machine. The results showed that the three-pipe nozzle with gas flow rate larger than 5 L/min could avoid oxidization, presenting better shielding effect in comparison with the single-pipe nozzle. Porosity formation could be suppressed with the gap between plate and skeleton less than 0.1 mm, while the existing porosity can be reduced with remelting. The maximum shear strength of stitch welding joint with minimal porosity was obtained by employing laser power of 1700 W, welding speed of 1.5 m/min and defocusing distance of +8 ram.展开更多
This contribution attempts to model the alteration of the in-plane elastic properties in laminates caused by stitching, and to predict the in-plane effective tensile strength of the stitched composite laminates. The d...This contribution attempts to model the alteration of the in-plane elastic properties in laminates caused by stitching, and to predict the in-plane effective tensile strength of the stitched composite laminates. The distortion of in-plane fibers is considered to be the main cause that affects the in-plane mechanical properties. A fiber distortion model is proposed to characterize the fiber misalignment and the fiber content concentration due to stitching. The undistorted region, the fiber distortion region, the resin-rich pocket and the through-thickness reinforcement section are taken into account. The fiber misalignment and inhomogeneous fiber content due to stitching have been formulated by introducing two parameters, the distortion width and maximum misalignment. It has been found that the ply stress concentration in stitched laminates is influenced by the two concurrent factors, the stitch hole and inhomogeneous fiber content. The stitch hole brings about the stress concentration whereas the higher fiber content at the local region induced by stitching restrains the local deformation of the composite. The model is used to predict the tensile strength of the [0/45/0/-45/90/45/0/-45]58 T300/QY9512 composite laminate stitched by Kevlar 29 yarn with different stitching configurations, showing an acceptable agreement with experimental data.展开更多
Stripes are artifacts in satellite images caused by various factors such as hardware defects. In some cases, these artifacts are introduced by some mitigating algorithms like Landsat SLC-off (Scan Line Corrector) ga...Stripes are artifacts in satellite images caused by various factors such as hardware defects. In some cases, these artifacts are introduced by some mitigating algorithms like Landsat SLC-off (Scan Line Corrector) gap-filling methods of LLHM (Local Linear Histogram Matching) and AWLHM (Adaptive Window Linear Histogram Matching), which leave stripes as a byproduct. To improve Landsat SLC-off images with stripes,we propose an algorithm involving some hypothetical stripe-crossing stitch lines using the mean pixel value of the stitch lines.展开更多
A flexible electronic shogging system was presented based on rotary type servo motor, which aimed to improve the dynamic response of the shogging drive and decrease the impact of the guide bar during the higher speed ...A flexible electronic shogging system was presented based on rotary type servo motor, which aimed to improve the dynamic response of the shogging drive and decrease the impact of the guide bar during the higher speed running of warp.knitting machine. In this system, the speed control mode, faster response servo motor, no-flat modified trapezoid motion law, and its electronic cam were chosen; the realization standard and method were also introduced in details. The speed response curves of loaded motor indicated that the system could satisfy the technology requirements of high-speed warp- knitting machine which run at the speed of 1 000 r/min in the experiments, and the vibration curves showed that the guide bar had weaker mechanical impact and higher dynamic response characteristics. The results indicated that the flexible electronic shogging system designed following the previous step was successful, and the design principle of the electronic shngging was testified validly.展开更多
Image/video stitching is a technology for solving the field of view(FOV)limitation of images/videos.It stitches multiple overlapping images/videos to generate a wide-FOV image/video,and has been used in various fields...Image/video stitching is a technology for solving the field of view(FOV)limitation of images/videos.It stitches multiple overlapping images/videos to generate a wide-FOV image/video,and has been used in various fields such as sports broadcasting,video surveillance,street view,and entertainment.This survey reviews image/video stitching algorithms,with a particular focus on those developed in recent years.Image stitching first calculates the corresponding relationships between multiple overlapping images,deforms and aligns the matched images,and then blends the aligned images to generate a wide-FOV image.A seamless method is always adopted to eliminate such potential flaws as ghosting and blurring caused by parallax or objects moving across the overlapping regions.Video stitching is the further extension of image stitching.It usually stitches selected frames of original videos to generate a stitching template by performing image stitching algorithms,and the subsequent frames can then be stitched according to the template.Video stitching is more complicated with moving objects or violent camera movement,because these factors introduce jitter,shakiness,ghosting,and blurring.Foreground detection technique is usually combined into stitching to eliminate ghosting and blurring,while video stabilization algorithms are adopted to solve the jitter and shakiness.This paper further discusses panoramic stitching as a special-extension of image/video stitching.Panoramic stitching is currently the most widely used application in stitching.This survey reviews the latest image/video stitching methods,and introduces the fundamental principles/advantages/weaknesses of image/video stitching algorithms.Image/video stitching faces long-term challenges such as wide baseline,large parallax,and low-texture problem in the overlapping region.New technologies may present new opportunities to address these issues,such as deep learning-based semantic correspondence,and 3D image stitching.Finally,this survey discusses the challenges of image/video stitching and proposes potential solutions.展开更多
This paper presents a new method for simultaneously eliminating visual artifacts caused by moving objects and structure misalignment in image stitching. Given that the input images are roughly aligned, our approach is...This paper presents a new method for simultaneously eliminating visual artifacts caused by moving objects and structure misalignment in image stitching. Given that the input images are roughly aligned, our approach is implemented in two stages. In the first stage, we discover motions between input images, and then extract their corresponding regions through a multi-seed based region growing algorithm. In the second stage, with prior information provided by the extracted regions, we perform a graph cut optimization in gradient-domain to determine which pixels to use from each image to achieve seamless stitching. Our method is simple to implement and effective. The experimental results illustrate that the proposed approach can produce comparable or superior results in comparison with state-of-the-art methods.展开更多
BACKGROUND Laparoscopic cervical cerclage is performed for patients with abnormal cervical anatomy and/or transvaginal cervical cerclage failure.However,the method of removing the stitches to allow labour induction re...BACKGROUND Laparoscopic cervical cerclage is performed for patients with abnormal cervical anatomy and/or transvaginal cervical cerclage failure.However,the method of removing the stitches to allow labour induction remains controversial.According to published literature,stitches are removed through laparoscopic or transvaginal methods.Herein,we report,for the first time,a case of a patient who had undergone laparoscopic cerclage,and then underwent removal of stitches by laparotomy and labour induction in the third trimester of pregnancy.CASE SUMMARY A patient who underwent laparoscopic cervical cerclage due to cervical insufficiency became pregnant naturally following the operation.At 31 wk of pregnancy,severe foetal malformations were found.To successfully induce labour,cerclage stitches were removed via laparotomy,and rivanol was injected directly into the uterus.Following successful induction of labour,the patient delivered a dead foetus.CONCLUSION This report provides a reliable scheme of removing cerclage stitches for patients who have undergone laparoscopic cerclage but experience severe foetal malformations.展开更多
At present,underwater terrain images are all strip-shaped small fragment images preprocessed by the side-scan sonar imaging system.However,the processed underwater terrain images have inconspicuous and few feature poi...At present,underwater terrain images are all strip-shaped small fragment images preprocessed by the side-scan sonar imaging system.However,the processed underwater terrain images have inconspicuous and few feature points.In order to better realize the stitching of underwater terrain images and solve the problems of slow traditional image stitching speed,we proposed an improved algorithm for underwater terrain image stitching based on spatial gradient feature block.First,the spatial gradient fuzzy C-Means algorithm is used to divide the underwater terrain image into feature blocks with the fusion of spatial gradient information.The accelerated-KAZE(AKAZE)algorithm is used to combine the feature block information to match the reference image and the target image.Then,the random sample consensus(RANSAC)is applied to optimize the matching results.Finally,image fusion is performed with the global homography and the optimal seam-line method to improve the accuracy of image overlay fusion.The experimental results show that the proposed method in this paper effectively divides images into feature blocks by combining spatial information and gradient information,which not only solves the problem of stitching failure of underwater terrain images due to unobvious features,and further reduces the sensitivity to noise,but also effectively reduces the iterative calculation in the feature point matching process of the traditional method,and improves the stitching speed.Ghosting and shape warping are significantly eliminated by re-optimizing the overlap of the image.展开更多
文摘A new geometric model of Multiaxial Warp-Knitted (MWK) performs, which is based on the experimental observations and analysis of basic stitch, is developed to relate the geometric parameters and process variables. The fiber volume fraction and fibre orientation of MWK reinforced composites are described in terms of structural and processing parameters in the model. And this model provides a basis for the prediction of mechanical behavior of the MWK reinforced composites.
文摘In this study, 3D computer modeling of simple warp-knitted structures is achieved based on 3D model of warp-knitted loops. Firstly, according to the studying on the geometric structure of warp-knitted loops, Goktepe's 3D solid yarn model is developed, and the dimensions of the warp-knitted loops are obtained; then 3D models of stitch defined by eleven given points and in-lay defined by five given points are built with the method of Non-Uniform Rational B-Spline (NURBS) curves and surfaces. Secondly, according to the chain notations of warp-knitted structures, the loop's shape can be decided, and with the 3D models the loops can be connected freely and smoothly in some special warp-knitted structures, such as miss-lapping and two- course in-lay. At last, with the tools of Visual C ++ and OpenGL, computer 3D simulation of two-bar warp-knitted fabrics is successfully realized, taking the factor of fabric light and materials into 3D structural model.
基金Funded by the Shanghai Post Doctoral Foundation Overseas Returned Scholars' Foundation of Education Ministry the Shanghai Key Discipline Project
文摘This paper reports the evolution of textile structure and mechanical properties of vascular prosthesis in the level of the whole prosthesis and the constituent filaments with respect to the manufacturing process. The tubular wall of the prosthesis is divided circumferentially into three zones; basic line (BL), remeshing line ( RL) and guide line ( GL). Some heterogeneity has been observed on the tubular wall in terms of stitch structure of the prosthesis and linear density of the constituent filaments. The breaking position of the prosthesis under circumferential tensile localizes preferentially in remeshing line that is the weakest zone by warp knitting with double needle bed. Furthermore, the statistical differences of the mechanical properties of the filaments of zone RL, GL and BL have been confirmed too. It is predictable that the deterioration of prosthesis, under physiological loads (periodical pulse blood pressure etc.), could happen firstly in the weaker zone in vivo.
基金National Natural Science Foundations of China(Nos.11272087,11572085)Financial Supports from Foundation for the Fok Ying-Tong Education Foundation of China(No.141070)the Fundamental Research Funds for the Central Universities of China(No.170310103)
文摘The in-plane tensile behaviors of bi-axial warp-knitted(BWK) composites under quasi-static and high strain rates loading were experimentally analyzed in this article. The tensile tests were conducted along warp direction( 0°) and weft direction( 90°) at quasi-static rate of 0. 001 s^(-1) and high strain rates ranging from 1 450 to 2 540 s^(-1),respectively. It is found that the significant strain rate sensitivity can be observed in the stress-strain curves of BWK composites. The fracture morphologies of BWK composites demonstrate that the tensile failure modes are shear failure and fiber breakage under the quasi-static testing condition while interface failure and fibers pullout are at high strain rates.
基金Science and Technology Research Project of the Henan Province(222102240014).
文摘Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lackingunique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life scenesseverely undermines the reliability of supervised learning methods in image stitching. Furthermore, existing deeplearning architectures designed for image stitching are often too bulky to be deployed on mobile and peripheralcomputing devices. To address these challenges, this study proposes a novel unsupervised image stitching methodbased on the YOLOv8 (You Only Look Once version 8) framework that introduces deep homography networksand attentionmechanisms. Themethodology is partitioned into three distinct stages. The initial stage combines theattention mechanism with a pooling pyramid model to enhance the detection and recognition of compact objectsin images, the task of the deep homography networks module is to estimate the global homography of the inputimages consideringmultiple viewpoints. The second stage involves preliminary stitching of the masks generated inthe initial stage and further enhancement through weighted computation to eliminate common stitching artifacts.The final stage is characterized by adaptive reconstruction and careful refinement of the initial stitching results.Comprehensive experiments acrossmultiple datasets are executed tometiculously assess the proposed model. Ourmethod’s Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM) improved by 10.6%and 6%. These experimental results confirm the efficacy and utility of the presented model in this paper.
基金Young and Middle-aged Teacher's Education and Research of Fujian Province,China(No.JA15405)the Excellent Academic Leaders Project of Shanghai Municipal Science and Technology Commission,China(No.12XD1400400)+2 种基金the Natural Science Foundation of Shanghai Municipal Science and Technology Commission,China(No.13ZR1400500)the Fundamental Research Funds for the Central Universities,China(No.13D110126)National Innovation Experiment Program for University Students,China(No.131025501)
文摘Based on classic theory of elastic rod,the warp-knitted loop geometry in plane is independent of yarn properties,while there is a certain gap between the geometrical model and the actual fabrics.According to this problem,further analysis of loop geometry is done based on the theory of elastic rod with theoretical calculation and experiments.The theoretical analysis found that the distance between the contacted points at the loop root affected the loop geometry,and the distance was affected by the ratio of bending rigidity and the friction between yarns.The experiments,forming simple loop by taking the yarn as an elastic rod,found that the bending rigidity affected the loop geometry.Then the relationships between warp-knitted loop geometry in plane of metallic fabrics and wires properties were studied.The results show that metallic fabrics are more suitable for the theory of elastic rod;the friction and bending rigidity of wire yarns affect the loop geometry in plane.Also,the elongation of yarn affects the loop geometry in the actual warp-knitted fabric.
文摘Stitch density is one of the critical quality parameters of knit fabrics. This parameter is closely related to other physical quality parameters like fabric weight, fabric tightness factor, fiber types, blend ratio, yarn diameter and linear density, and fabric structure. Selecting stitch density (wales per inch, course per inch) is essential to getting the appropriate fabric weight and desired quality. Usually, no rules or assumptions exist to get the desired stitch density in the finished fabric stage. Fifteen types of blended knit fabrics were prepared to conduct the study. The varying percentages of cotton, polyester, and elastane are incorporated in the blends. Regression analysis and regression ANOVA tests were done to predict the stitch density of finished fabrics. A suitable regression equation is established to get the desired results. The study also found that the stitch density value in the finished stage fabric decreases by approximately 15% compared to the stitch density in the grey fabric stage. This study will help the fabric manufacturers get the finished fabric stitch density in advance by utilizing the grey fabric stitch density data set. The author expects this research to benefit the knitting and dyeing industry, new researchers, and advanced researchers.
文摘A multi layer gridless area router is reported.Based on corner stitching,this router adopts tile expansion to explore path for each net.A heuristic method that penalizes nodes deviating from the destination is devised to accelerate the algorithm.Besides,an enhanced interval tree is used to manage the intermediate data structure.In order to improve the completion rate of routing,a new gridless rip up and rerouting algorithm is proposed.The experimental results indicate that the completion rate is improved after the rip up and reroute process and the speed of this algorithm is satisfactory.
基金The National High Technology Research and Development Program of China(863 Program)(No.2005AA420240)the Key Science and Technology Program of Jiangsu Province (No.BE2005014)
文摘According to the bio-characteristics of the lower and upper cavity surfaces of dental restoration, a stitching approach is proposed based on a virtual zipper working mechanism and a minimization of the surface total curvature energy, which is used to resolve the stitching problems existing during computer-aided design for dental restorations. First, the two boundaries corresponding to the lower and upper surfaces are triangulated based on the zipper working mechanism to generate the initial stitching surface patch, of which the edges are distributed uniformly between the boundaries. Secondly, the initial stitching surface patch is subdivided and deformed to reconstruct an optimized surface patch according to the bio-characteristics of the teeth. The optimized surface patch is minimally distinguishable from the surrounding mesh in smoothness and density, and it can stitch the upper and lower cavity surfaces naturally. The experimental results show that the dental restorations obtained by the proposed method can satisfy both the shape aesthetic and the fitting accuracy, and meet the requirements of clinical oral medicine.
基金Project(2012BAF08B02)supported by Key Project in the National Science and Technology Pillar Program During the Twelfth Five-year Plan Period,China
文摘Stitch welding of plate covered skeleton structure of Ti-6Al-4V titanium alloys has a variety of applications in aerospace vehicle manufacture. The laser stitch welding of Ti-6Al-4V titanium alloys was carried out by a 4 kW ROFIN fiber laser. Influences of laser welding parameters on the macroscopic geometry, porosity, microstructure and mechanical properties of the stitch welded seams were investigated by digital microscope, optical microscope, scanning electron microscope and universal tensile testing machine. The results showed that the three-pipe nozzle with gas flow rate larger than 5 L/min could avoid oxidization, presenting better shielding effect in comparison with the single-pipe nozzle. Porosity formation could be suppressed with the gap between plate and skeleton less than 0.1 mm, while the existing porosity can be reduced with remelting. The maximum shear strength of stitch welding joint with minimal porosity was obtained by employing laser power of 1700 W, welding speed of 1.5 m/min and defocusing distance of +8 ram.
基金Project supported by the Excellent Young Teachers Program of the Ministry of Education of Chinathe Shu-Guang Program of the City of Shanghai+1 种基金the National Natural Sciences Foundation of China(No.10372120)Shanghai Leading Academic Discipline Project(No.Y0103).
文摘This contribution attempts to model the alteration of the in-plane elastic properties in laminates caused by stitching, and to predict the in-plane effective tensile strength of the stitched composite laminates. The distortion of in-plane fibers is considered to be the main cause that affects the in-plane mechanical properties. A fiber distortion model is proposed to characterize the fiber misalignment and the fiber content concentration due to stitching. The undistorted region, the fiber distortion region, the resin-rich pocket and the through-thickness reinforcement section are taken into account. The fiber misalignment and inhomogeneous fiber content due to stitching have been formulated by introducing two parameters, the distortion width and maximum misalignment. It has been found that the ply stress concentration in stitched laminates is influenced by the two concurrent factors, the stitch hole and inhomogeneous fiber content. The stitch hole brings about the stress concentration whereas the higher fiber content at the local region induced by stitching restrains the local deformation of the composite. The model is used to predict the tensile strength of the [0/45/0/-45/90/45/0/-45]58 T300/QY9512 composite laminate stitched by Kevlar 29 yarn with different stitching configurations, showing an acceptable agreement with experimental data.
文摘Stripes are artifacts in satellite images caused by various factors such as hardware defects. In some cases, these artifacts are introduced by some mitigating algorithms like Landsat SLC-off (Scan Line Corrector) gap-filling methods of LLHM (Local Linear Histogram Matching) and AWLHM (Adaptive Window Linear Histogram Matching), which leave stripes as a byproduct. To improve Landsat SLC-off images with stripes,we propose an algorithm involving some hypothetical stripe-crossing stitch lines using the mean pixel value of the stitch lines.
基金National Science and Technology Support Program,China(No.2012BAF13B03)China Textile Industry Association Technology Guidance Program(No.2011067)Jiangnan University Independent Research Funding Plan,China(No.JUSRP211A04)
文摘A flexible electronic shogging system was presented based on rotary type servo motor, which aimed to improve the dynamic response of the shogging drive and decrease the impact of the guide bar during the higher speed running of warp.knitting machine. In this system, the speed control mode, faster response servo motor, no-flat modified trapezoid motion law, and its electronic cam were chosen; the realization standard and method were also introduced in details. The speed response curves of loaded motor indicated that the system could satisfy the technology requirements of high-speed warp- knitting machine which run at the speed of 1 000 r/min in the experiments, and the vibration curves showed that the guide bar had weaker mechanical impact and higher dynamic response characteristics. The results indicated that the flexible electronic shogging system designed following the previous step was successful, and the design principle of the electronic shngging was testified validly.
基金the National Natural Science Foundation of China(61872023).
文摘Image/video stitching is a technology for solving the field of view(FOV)limitation of images/videos.It stitches multiple overlapping images/videos to generate a wide-FOV image/video,and has been used in various fields such as sports broadcasting,video surveillance,street view,and entertainment.This survey reviews image/video stitching algorithms,with a particular focus on those developed in recent years.Image stitching first calculates the corresponding relationships between multiple overlapping images,deforms and aligns the matched images,and then blends the aligned images to generate a wide-FOV image.A seamless method is always adopted to eliminate such potential flaws as ghosting and blurring caused by parallax or objects moving across the overlapping regions.Video stitching is the further extension of image stitching.It usually stitches selected frames of original videos to generate a stitching template by performing image stitching algorithms,and the subsequent frames can then be stitched according to the template.Video stitching is more complicated with moving objects or violent camera movement,because these factors introduce jitter,shakiness,ghosting,and blurring.Foreground detection technique is usually combined into stitching to eliminate ghosting and blurring,while video stabilization algorithms are adopted to solve the jitter and shakiness.This paper further discusses panoramic stitching as a special-extension of image/video stitching.Panoramic stitching is currently the most widely used application in stitching.This survey reviews the latest image/video stitching methods,and introduces the fundamental principles/advantages/weaknesses of image/video stitching algorithms.Image/video stitching faces long-term challenges such as wide baseline,large parallax,and low-texture problem in the overlapping region.New technologies may present new opportunities to address these issues,such as deep learning-based semantic correspondence,and 3D image stitching.Finally,this survey discusses the challenges of image/video stitching and proposes potential solutions.
文摘This paper presents a new method for simultaneously eliminating visual artifacts caused by moving objects and structure misalignment in image stitching. Given that the input images are roughly aligned, our approach is implemented in two stages. In the first stage, we discover motions between input images, and then extract their corresponding regions through a multi-seed based region growing algorithm. In the second stage, with prior information provided by the extracted regions, we perform a graph cut optimization in gradient-domain to determine which pixels to use from each image to achieve seamless stitching. Our method is simple to implement and effective. The experimental results illustrate that the proposed approach can produce comparable or superior results in comparison with state-of-the-art methods.
文摘BACKGROUND Laparoscopic cervical cerclage is performed for patients with abnormal cervical anatomy and/or transvaginal cervical cerclage failure.However,the method of removing the stitches to allow labour induction remains controversial.According to published literature,stitches are removed through laparoscopic or transvaginal methods.Herein,we report,for the first time,a case of a patient who had undergone laparoscopic cerclage,and then underwent removal of stitches by laparotomy and labour induction in the third trimester of pregnancy.CASE SUMMARY A patient who underwent laparoscopic cervical cerclage due to cervical insufficiency became pregnant naturally following the operation.At 31 wk of pregnancy,severe foetal malformations were found.To successfully induce labour,cerclage stitches were removed via laparotomy,and rivanol was injected directly into the uterus.Following successful induction of labour,the patient delivered a dead foetus.CONCLUSION This report provides a reliable scheme of removing cerclage stitches for patients who have undergone laparoscopic cerclage but experience severe foetal malformations.
基金This research was funded by College Student Innovation and Entrepreneurship Training Program,Grant Number 2021055Z and S202110082031the Special Project for Cultivating Scientific and Technological Innovation Ability of College and Middle School Students in Hebei Province,Grant Number 2021H011404.
文摘At present,underwater terrain images are all strip-shaped small fragment images preprocessed by the side-scan sonar imaging system.However,the processed underwater terrain images have inconspicuous and few feature points.In order to better realize the stitching of underwater terrain images and solve the problems of slow traditional image stitching speed,we proposed an improved algorithm for underwater terrain image stitching based on spatial gradient feature block.First,the spatial gradient fuzzy C-Means algorithm is used to divide the underwater terrain image into feature blocks with the fusion of spatial gradient information.The accelerated-KAZE(AKAZE)algorithm is used to combine the feature block information to match the reference image and the target image.Then,the random sample consensus(RANSAC)is applied to optimize the matching results.Finally,image fusion is performed with the global homography and the optimal seam-line method to improve the accuracy of image overlay fusion.The experimental results show that the proposed method in this paper effectively divides images into feature blocks by combining spatial information and gradient information,which not only solves the problem of stitching failure of underwater terrain images due to unobvious features,and further reduces the sensitivity to noise,but also effectively reduces the iterative calculation in the feature point matching process of the traditional method,and improves the stitching speed.Ghosting and shape warping are significantly eliminated by re-optimizing the overlap of the image.