Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative airdefense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune s...Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative airdefense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune system (BIS) according to the similarity of the defense mechanism and characteristics between the CASoSSWF and the BIS, and then designs the models of components and the architecture for a monitoring agent, a regulating agent, a killer agent, a pre-warning agent and a communicating agent by making use of the theories and methods of the artificial immune system, the multi-agent system (MAS), the vaccine and the danger theory (DT). Moreover a new immune multi-agent model using vaccine based on DT (IMMUVBDT) for the cooperative air-defense SoS is advanced. The immune response and immune mechanism of the CASoSSWF are analyzed. The model has a capability of memory, evolution, commendable dynamic environment adaptability and self-learning, and embodies adequately the cooperative air-defense mechanism for the CASoSSWF. Therefore it shows a novel idea for the CASoSSWF which can provide conception models for a surface warship formation operation simulation system.展开更多
Redundancy is a common structure for warship system,and it is an effective way to improve the reliability of the system.In this paper, warship system is taken as the object of study,based on the system reliability equ...Redundancy is a common structure for warship system,and it is an effective way to improve the reliability of the system.In this paper, warship system is taken as the object of study,based on the system reliability equivalence principle, a spares demand rate calculation method for redundant system is proposed through structure transformation. According to the system analysis method, the general modeling data structure of spares support echelon and system indenture is established, and the mission success probability is taken as the optimization target to build the dynamic optimization model of carrying spares during the process of multi-phase. By introducing the Lagrange multiplier, the spares weight, volume and cost are transformed to the single target of the spares total scale, and the initial Lagrange factors and its dynamic adjustment policy is proposed. In a given example, the main influence factors of the carrying spares project are analyzed, and the study results are in accordance with the reality, which can provide a new approach to mission-oriented carrying spares optimization for the redundant system.展开更多
The authors developed a prototype of a warship maintenance system. The process started by defining the maintenance requirements of warship equipment. Next, a planning scheme was development for a maintenance network. ...The authors developed a prototype of a warship maintenance system. The process started by defining the maintenance requirements of warship equipment. Next, a planning scheme was development for a maintenance network. An optimization target for the plan and indexes for assessment were established. Based on the above work, a simulation model was proposed with two layers: a base and a workshop. Dispatching rules were then formulated for the simulation. Experimental results proved the validity of the model and the dispatching algorithm. It was found that the model can solve the capacity evaluation problem for maintenance systems and provides a scientific basis for decision-maker to make decisions regarding equipment maintenance.展开更多
WTA (weapon-target allocation) of air defense operation is a very complicated problem and current models focus on static and restricted WTA problem mostly. Based on the dynamic characteristics of air defense operati...WTA (weapon-target allocation) of air defense operation is a very complicated problem and current models focus on static and restricted WTA problem mostly. Based on the dynamic characteristics of air defense operational command and decision of warships' formation, a dynamic WTA model is established. Simulation results show that switch fire and repetition fire of anti-air weapon system affect the result of the air defense operation remarkably and the dynamic model is more satisfying than static ones. Related results are gained based on the analysis of the simulation results and the results are accordant with the intuitionistic tactical judgment. The model is some reference for the research of air defense C^3I system of warships' formation.展开更多
In view of the current reliability evaluation requirements of warship equipment based on component, this paper comprehensively considered the characteristics of components,and the component identification method, stru...In view of the current reliability evaluation requirements of warship equipment based on component, this paper comprehensively considered the characteristics of components,and the component identification method, structural decomposition method,component architecture modeling method were studied for warship equipment software. Based on the characteristics of warship equipment component, this paper proposed a formal modeling language based on Petri nets to realize the modeling of component software architecture and laid a foundation for the reliability evaluation method research of warship equipment component.展开更多
To cope with multi-directional transmission coupling,spreading, amplification, and chain reaction of risks during multiproject parallel construction of warships, a risk transmission evaluation method is proposed, whic...To cope with multi-directional transmission coupling,spreading, amplification, and chain reaction of risks during multiproject parallel construction of warships, a risk transmission evaluation method is proposed, which integrates an intuitionistic cloud model with a fuzzy cognitive map. By virtue of expectancy Ex, entropy En, and hyper entropy He, the risk fuzziness and randomness of the knowledge of experts are organically combined to develop a method for converting bi-linguistic variable decision-making information into the quantitative information of the intuitionistic normal cloud(INC) model. Subsequently, the threshold function and weighted summation operation in the traditional fuzzy cognitive map is converted into the INC ordered weighted averaging operator to create the risk transmission model based on the intuitionistic fuzzy cognitive map(IFCM) and the algorithm for solving it. Subsequently, the risk influence sequencing method based on INC and the risk rating method based on nearness are proposed on the basis of Monte Carlo simulation in order to realize the mutual conversion of the qualitative and quantitative information in the risk evaluation results.Example analysis is presented to verify the effectiveness and practicality of the methods.展开更多
Research on damage stability and unsinkability is a valuable source of knowledge of behaving a ship while flooding its compartments. The time when compartment is flooded (ty) and stability parameters are key element...Research on damage stability and unsinkability is a valuable source of knowledge of behaving a ship while flooding its compartments. The time when compartment is flooded (ty) and stability parameters are key elements which have influence on a rescue action. The knowledge of the time mentioned is very important for a commanding officer to make decisions while fighting for survival of the ship. Therefore, the purpose of research was to develop a method to accurately and quickly calculate the flooding time of selected ship compartment. To provide the information about the time ty, a new method was designed. This method was based on an accurate determination of the amount of water entering to the compartment. For this purpose, the permeability depends on the water level in the compartment. Next, the computer program was built for both the time tfcalculation and showing the flooding process. This method was tested experimentally and the results of the tests are presented in the paper. In the next part of research, which was carried out on the laboratory stand bed, the flooding time of damaged compartment of warship model was measured. The results of calculation are compared to the experiments and discussed.展开更多
The appropriate prediction of the hull deflection of a severely damaged warship is an important area in the research of the warship survivability. In this paper, the asymmetrical beam bending theory is applied to set ...The appropriate prediction of the hull deflection of a severely damaged warship is an important area in the research of the warship survivability. In this paper, the asymmetrical beam bending theory is applied to set up the damaged model, a comparison of the longitudinal strength, the deflections of damaged hull subjected to both hagging and sagging moments, and shear forces is carried out. The external loads are also calculated according to different damaged positions. Finally, some results and conclusions are obtained.展开更多
文摘Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative airdefense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune system (BIS) according to the similarity of the defense mechanism and characteristics between the CASoSSWF and the BIS, and then designs the models of components and the architecture for a monitoring agent, a regulating agent, a killer agent, a pre-warning agent and a communicating agent by making use of the theories and methods of the artificial immune system, the multi-agent system (MAS), the vaccine and the danger theory (DT). Moreover a new immune multi-agent model using vaccine based on DT (IMMUVBDT) for the cooperative air-defense SoS is advanced. The immune response and immune mechanism of the CASoSSWF are analyzed. The model has a capability of memory, evolution, commendable dynamic environment adaptability and self-learning, and embodies adequately the cooperative air-defense mechanism for the CASoSSWF. Therefore it shows a novel idea for the CASoSSWF which can provide conception models for a surface warship formation operation simulation system.
基金supported by the National Defense Pre-research Project in the 13th Five-Year(41404050502)the National Defense Science and Technology Fund of the Central Military Commission(2101140)
文摘Redundancy is a common structure for warship system,and it is an effective way to improve the reliability of the system.In this paper, warship system is taken as the object of study,based on the system reliability equivalence principle, a spares demand rate calculation method for redundant system is proposed through structure transformation. According to the system analysis method, the general modeling data structure of spares support echelon and system indenture is established, and the mission success probability is taken as the optimization target to build the dynamic optimization model of carrying spares during the process of multi-phase. By introducing the Lagrange multiplier, the spares weight, volume and cost are transformed to the single target of the spares total scale, and the initial Lagrange factors and its dynamic adjustment policy is proposed. In a given example, the main influence factors of the carrying spares project are analyzed, and the study results are in accordance with the reality, which can provide a new approach to mission-oriented carrying spares optimization for the redundant system.
基金Supported by the National Natural Science Foundation of China under Grant No.60774036
文摘The authors developed a prototype of a warship maintenance system. The process started by defining the maintenance requirements of warship equipment. Next, a planning scheme was development for a maintenance network. An optimization target for the plan and indexes for assessment were established. Based on the above work, a simulation model was proposed with two layers: a base and a workshop. Dispatching rules were then formulated for the simulation. Experimental results proved the validity of the model and the dispatching algorithm. It was found that the model can solve the capacity evaluation problem for maintenance systems and provides a scientific basis for decision-maker to make decisions regarding equipment maintenance.
文摘WTA (weapon-target allocation) of air defense operation is a very complicated problem and current models focus on static and restricted WTA problem mostly. Based on the dynamic characteristics of air defense operational command and decision of warships' formation, a dynamic WTA model is established. Simulation results show that switch fire and repetition fire of anti-air weapon system affect the result of the air defense operation remarkably and the dynamic model is more satisfying than static ones. Related results are gained based on the analysis of the simulation results and the results are accordant with the intuitionistic tactical judgment. The model is some reference for the research of air defense C^3I system of warships' formation.
文摘In view of the current reliability evaluation requirements of warship equipment based on component, this paper comprehensively considered the characteristics of components,and the component identification method, structural decomposition method,component architecture modeling method were studied for warship equipment software. Based on the characteristics of warship equipment component, this paper proposed a formal modeling language based on Petri nets to realize the modeling of component software architecture and laid a foundation for the reliability evaluation method research of warship equipment component.
基金supported by the National Natural Science Foundation of China(71501183).
文摘To cope with multi-directional transmission coupling,spreading, amplification, and chain reaction of risks during multiproject parallel construction of warships, a risk transmission evaluation method is proposed, which integrates an intuitionistic cloud model with a fuzzy cognitive map. By virtue of expectancy Ex, entropy En, and hyper entropy He, the risk fuzziness and randomness of the knowledge of experts are organically combined to develop a method for converting bi-linguistic variable decision-making information into the quantitative information of the intuitionistic normal cloud(INC) model. Subsequently, the threshold function and weighted summation operation in the traditional fuzzy cognitive map is converted into the INC ordered weighted averaging operator to create the risk transmission model based on the intuitionistic fuzzy cognitive map(IFCM) and the algorithm for solving it. Subsequently, the risk influence sequencing method based on INC and the risk rating method based on nearness are proposed on the basis of Monte Carlo simulation in order to realize the mutual conversion of the qualitative and quantitative information in the risk evaluation results.Example analysis is presented to verify the effectiveness and practicality of the methods.
文摘Research on damage stability and unsinkability is a valuable source of knowledge of behaving a ship while flooding its compartments. The time when compartment is flooded (ty) and stability parameters are key elements which have influence on a rescue action. The knowledge of the time mentioned is very important for a commanding officer to make decisions while fighting for survival of the ship. Therefore, the purpose of research was to develop a method to accurately and quickly calculate the flooding time of selected ship compartment. To provide the information about the time ty, a new method was designed. This method was based on an accurate determination of the amount of water entering to the compartment. For this purpose, the permeability depends on the water level in the compartment. Next, the computer program was built for both the time tfcalculation and showing the flooding process. This method was tested experimentally and the results of the tests are presented in the paper. In the next part of research, which was carried out on the laboratory stand bed, the flooding time of damaged compartment of warship model was measured. The results of calculation are compared to the experiments and discussed.
文摘The appropriate prediction of the hull deflection of a severely damaged warship is an important area in the research of the warship survivability. In this paper, the asymmetrical beam bending theory is applied to set up the damaged model, a comparison of the longitudinal strength, the deflections of damaged hull subjected to both hagging and sagging moments, and shear forces is carried out. The external loads are also calculated according to different damaged positions. Finally, some results and conclusions are obtained.