A novel biosorbent was synthesized by grafting bisthiourea(BTU)on a silk sericin(SS)matrix.This biosorbent was denoted as BTU-SS and characterized by Fourier transform infrared spectroscopy(FTIR),zeta potential measur...A novel biosorbent was synthesized by grafting bisthiourea(BTU)on a silk sericin(SS)matrix.This biosorbent was denoted as BTU-SS and characterized by Fourier transform infrared spectroscopy(FTIR),zeta potential measurements,elemental analysis,and X-ray photoelectron spectroscopy(XPS).As revealed by the adsorption experiments,both BTU-SS and SS showed low affinity towards coexisting base metallic ions in Ag(I)-Cu(II)-Zn(II)-Ni(II)-Pb(II)electronic waste leachate mixtures,while their adsorption capacities towards Ag(I)reached 30.5 and 10.4 mg∙g-1 at a pH of 5.0,respectively.BTU-SS showed higher selectivity towards Ag(I)than SS,as revealed by the Ag(I)partition coefficients between the biosorbents and the leachate(16634.6 and 403.3,respectively).As further demonstrated by column experiments,BTU-SS allowed the separation of Ag(I)from an electronic waste leachate.Thermodynamic studies showed that the adsorption of Ag(I)was exothermic and spontaneous,while adsorption kinetic experiments revealed that chemisorption dominated the adsorption process with activation energies of 47.67 and 53.27 kJ∙mol-1 for BTU-SS and SS,respectively.FTIR and XPS analyses of fresh and Ag(I)-loaded BTU-SS further revealed an adsorption mechanism mainly involving electrostatic and coordination interactions.展开更多
The aim of the research was to develop new products and processes from a manufacturing waste from an Italian metallurgic company.The company produced thin silver metallic films and the production scraps were silver fl...The aim of the research was to develop new products and processes from a manufacturing waste from an Italian metallurgic company.The company produced thin silver metallic films and the production scraps were silver flakes.The possibility to use the silver flakes in water disinfection processes was studied.The antimicrobial activity of the flakes was investigated in batch using Escherichia coli as Gram-negative microorganism model.The flakes did not show any antimicrobial activity,so they were activated with two different processes: thermal activation in reducing atmosphere and chemical activation,obtaining,respectively,reduced flakes (RF) and chemical flakes (CF).The flakes,activated with either treatment,showed antimicrobial activity against E.coli.The kill rate was dependent on the type of activated flakes.The chemical flakes were more efficient than reduced flakes.The kill rate determined for 1 g of CF,1.0 ± 0.2 min ?1 ,was greater than the kill rate determined for 1 g of RF,0.069 ± 0.004 min ?1 .This was confirmed also by the minimum inhibitory concentration values.It was demonstrated that the antimicrobial capability was dependent on flakes amount and on the type of aqueous medium.Furthermore,the flakes maintained their properties also when used a second time.Finally,the antimicrobial activities of flakes were tested in an effluent of a wastewater treatment plant where a variety of heterotrophic bacteria were present.展开更多
基金This work was supported by the Natural Science Foundation of Education Department of Shaanxi Provincial Government(2013JK0873).
文摘A novel biosorbent was synthesized by grafting bisthiourea(BTU)on a silk sericin(SS)matrix.This biosorbent was denoted as BTU-SS and characterized by Fourier transform infrared spectroscopy(FTIR),zeta potential measurements,elemental analysis,and X-ray photoelectron spectroscopy(XPS).As revealed by the adsorption experiments,both BTU-SS and SS showed low affinity towards coexisting base metallic ions in Ag(I)-Cu(II)-Zn(II)-Ni(II)-Pb(II)electronic waste leachate mixtures,while their adsorption capacities towards Ag(I)reached 30.5 and 10.4 mg∙g-1 at a pH of 5.0,respectively.BTU-SS showed higher selectivity towards Ag(I)than SS,as revealed by the Ag(I)partition coefficients between the biosorbents and the leachate(16634.6 and 403.3,respectively).As further demonstrated by column experiments,BTU-SS allowed the separation of Ag(I)from an electronic waste leachate.Thermodynamic studies showed that the adsorption of Ag(I)was exothermic and spontaneous,while adsorption kinetic experiments revealed that chemisorption dominated the adsorption process with activation energies of 47.67 and 53.27 kJ∙mol-1 for BTU-SS and SS,respectively.FTIR and XPS analyses of fresh and Ag(I)-loaded BTU-SS further revealed an adsorption mechanism mainly involving electrostatic and coordination interactions.
基金Lombardia Region for financial support (Progetto Ingenio)
文摘The aim of the research was to develop new products and processes from a manufacturing waste from an Italian metallurgic company.The company produced thin silver metallic films and the production scraps were silver flakes.The possibility to use the silver flakes in water disinfection processes was studied.The antimicrobial activity of the flakes was investigated in batch using Escherichia coli as Gram-negative microorganism model.The flakes did not show any antimicrobial activity,so they were activated with two different processes: thermal activation in reducing atmosphere and chemical activation,obtaining,respectively,reduced flakes (RF) and chemical flakes (CF).The flakes,activated with either treatment,showed antimicrobial activity against E.coli.The kill rate was dependent on the type of activated flakes.The chemical flakes were more efficient than reduced flakes.The kill rate determined for 1 g of CF,1.0 ± 0.2 min ?1 ,was greater than the kill rate determined for 1 g of RF,0.069 ± 0.004 min ?1 .This was confirmed also by the minimum inhibitory concentration values.It was demonstrated that the antimicrobial capability was dependent on flakes amount and on the type of aqueous medium.Furthermore,the flakes maintained their properties also when used a second time.Finally,the antimicrobial activities of flakes were tested in an effluent of a wastewater treatment plant where a variety of heterotrophic bacteria were present.