To separate the cadmium and nickel resources in waste Ni-Cd batteries, aself-designed vacuum distillation recycling system was studied under laboratory conditions. Theeffects of system temperature, operating pressure,...To separate the cadmium and nickel resources in waste Ni-Cd batteries, aself-designed vacuum distillation recycling system was studied under laboratory conditions. Theeffects of system temperature, operating pressure, and time on the separation of Ni and Cd werestudied respectively. The mechanism of vacuum thermal recycling was also discussed. Results showthat vacuum distillation is a very effective separation method for waste Ni-Cd batteries. At aconstant pressure, the increase of temperature can improve the separating efficiency of Cd. When thetemperature is 1 173 K, cadmium can evaporate completely from the samples during 3 h at 10 Pa. Thereduction of pressure in a certain range is effective to the separating of Cd from Ni-Cd batteriesby vacuum distillation.展开更多
High temperature vaccum evaporation is a recycling technology that includes a selective material recovering process. The fundamental research on a process of disassembling and recovering selected materials from Ni Cd ...High temperature vaccum evaporation is a recycling technology that includes a selective material recovering process. The fundamental research on a process of disassembling and recovering selected materials from Ni Cd batteries was conducted using self designed experimental apparatus. An effective recycling technology based on the evaporation phenomenon of batteries and the elements of cadmium under the laboratory condition was studied. The results show that: (1)Ni/Cd can be effectively recovered by vacuum distillation at appropriate temperature, pressure and time, and high purity cadmium (>99%) can be obtained through the process; (2)the effective distillatory temperature should be at the range of 5731 173 K; (3)the higher the evaporation temperature, the lower the purity of cadmium in condensate展开更多
Recovery of Ni-Cd batteries was studied by a self-designed vacuum-aided recovering system under laboratory conditions. The fundamental research on a process of disassembling and recovering selected materials from Ni-C...Recovery of Ni-Cd batteries was studied by a self-designed vacuum-aided recovering system under laboratory conditions. The fundamental research on a process of disassembling and recovering selected materials from Ni-Cd batterieswas conducted. The impacts of temperature, pressure and time were studied respectively. The mechanism of vacuum thermal recovering was also discussed. The results show that: Ni-Cd batteries can be recovered effectively byvacuum-aided recovering system at 573~1173 K. At constant pressure, the increase of temperature can improve theseparating efficiency of cadmium. When the temperature is 1173 K, the cadmium can evaporate completely fromthe residue during 3 h at 10 Pa. The reduction of pressure in the certain range is effective to separate cadmium byvacuum distillation. Distillation time is a very important factor affecting separation of cadmium.展开更多
文摘To separate the cadmium and nickel resources in waste Ni-Cd batteries, aself-designed vacuum distillation recycling system was studied under laboratory conditions. Theeffects of system temperature, operating pressure, and time on the separation of Ni and Cd werestudied respectively. The mechanism of vacuum thermal recycling was also discussed. Results showthat vacuum distillation is a very effective separation method for waste Ni-Cd batteries. At aconstant pressure, the increase of temperature can improve the separating efficiency of Cd. When thetemperature is 1 173 K, cadmium can evaporate completely from the samples during 3 h at 10 Pa. Thereduction of pressure in a certain range is effective to the separating of Cd from Ni-Cd batteriesby vacuum distillation.
文摘High temperature vaccum evaporation is a recycling technology that includes a selective material recovering process. The fundamental research on a process of disassembling and recovering selected materials from Ni Cd batteries was conducted using self designed experimental apparatus. An effective recycling technology based on the evaporation phenomenon of batteries and the elements of cadmium under the laboratory condition was studied. The results show that: (1)Ni/Cd can be effectively recovered by vacuum distillation at appropriate temperature, pressure and time, and high purity cadmium (>99%) can be obtained through the process; (2)the effective distillatory temperature should be at the range of 5731 173 K; (3)the higher the evaporation temperature, the lower the purity of cadmium in condensate
文摘Recovery of Ni-Cd batteries was studied by a self-designed vacuum-aided recovering system under laboratory conditions. The fundamental research on a process of disassembling and recovering selected materials from Ni-Cd batterieswas conducted. The impacts of temperature, pressure and time were studied respectively. The mechanism of vacuum thermal recovering was also discussed. The results show that: Ni-Cd batteries can be recovered effectively byvacuum-aided recovering system at 573~1173 K. At constant pressure, the increase of temperature can improve theseparating efficiency of cadmium. When the temperature is 1173 K, the cadmium can evaporate completely fromthe residue during 3 h at 10 Pa. The reduction of pressure in the certain range is effective to separate cadmium byvacuum distillation. Distillation time is a very important factor affecting separation of cadmium.