The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were expl...The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were explored in this work.Experimental results showed that 0.2 g PF(g TSS)^(-1)(total suspended solid)combined with 0.02 g TS(g TSS)^(-1) could further improve SCFAs’production,and the maximum SCFAs content reached 2008.7 mg COD L^(-1),which is 1.2 and 4.5 times higher than those with PF and TS individually added,respectively,and 5.3 times higher than that of blank WAS on Day 12.In the model substrates experiments,the degradation rates of bovine serum albumin and dextran with combination of PF and TS were 41.3%±0.1% and 48.5%±0.06%,respectively,on Day 3,which are lower than those in blank WAS(with degradation rates of 72.3%±0.5%and 90.3%±0.3%).It was revealed that the oxidative effect of PF and the solubilization of TS caused more organic matters to be dissolved out from WAS,providing a large number of biodegradable substances for subsequent SCFAs production.While WAS pretreated with the combination of PF and TS,the relative abundances of Firmicutes increased from 6.4%(blank)to 38.6%,and that of Proteobacteria decreased from 41.8%(blank)to 21.8%.The combination of PF and TS promoted the hydrolysis process of WAS by enriching Firmicutes,and then increased acetic acid production by inhibiting Proteobacteria that consumed SCFAs.Meanwhile,at the genus level,acidogenesis bacteria(e.g.,Proteiniclasticum and Petrimonas)were enriched whereas SCFAs consuming bacteria(e.g.,Dokdonella)were inhibited.展开更多
This paper researched a promising biological treatment of methyl violet waste water by methods of activated sludge.Effects of temperature and pH were studied on this process.Kinetic equation ...This paper researched a promising biological treatment of methyl violet waste water by methods of activated sludge.Effects of temperature and pH were studied on this process.Kinetic equation of the substrate biodegradation was investigated in the experimental range.It was studied and simulated that flow within the bubble region of this bioreactor according to the κ ε two fluid equation.Simulation results agree well with experimental data.展开更多
Activated sludge process has been widely used to remove phosphorus and nitrogen from wastewater. However,the nitrogen and phosphorus removal is sometimes unsatisfactory due to the low influent COD.Another problem with...Activated sludge process has been widely used to remove phosphorus and nitrogen from wastewater. However,the nitrogen and phosphorus removal is sometimes unsatisfactory due to the low influent COD.Another problem with the activated sludge process is that large amount of waste activated sludge is produced,which needs further treatment.In this study,the waste activated sludge alkaline fermentation liquid was used as the main carbon source for phosphorus and nitrogen removal under anaerobic followed by alternating aerobic-anoxic conditions,and the results were compared with those using acetic acid as the carbon source.The use of alkaline fermentation liquid not only affected the transformations of phosphorus,nitrogen,intracellular polyhydroxyalkanoates and glycogen, but also led to higher removal efficiencies for phosphorus and nitrogen compared with acetic acid.It was observed that ammonium was completely removed with either alkaline fermentation liquid or acetic acid as the carbon source. However,the former resulted in higher removal efficiencies for phosphorus(95%)and nitrogen(82%),while the latter showed lower ones(87%and 74%,respectively).The presence of a large amount of propionic acid in the alkaline fermentation liquid was one possible reason for its higher phosphorus removal efficiency.Exogenous instead of endogenous denitrification was the main pathway for nitrogen removal with the alkaline fermentation liquid as the carbon source,which was responsible for its higher nitrogen removal efficiency.It seems that the alkaline fermentation liquid can replace acetic acid as the carbon source for phosphorus and nitrogen removal in anaerobic fol- lowed by alternating aerobic-anoxic sequencing batch reactor.展开更多
The accumulation of short-chain fatty acids (SCFAs), a preferred carbon source for enhanced biological phosphorus removal microbes, was significantly improved when waste activated sludge (WAS) was fermented at pH ...The accumulation of short-chain fatty acids (SCFAs), a preferred carbon source for enhanced biological phosphorus removal microbes, was significantly improved when waste activated sludge (WAS) was fermented at pH 10. The kinetics of WAS hydrolysis and SCFAs production at pH 10 was investigated. It was observed that during WAS anaerobic fermentation the accumulation of SCFAs was limited by the hydrolysis process, and both the hydrolysis of WAS particulate COD and the accumulation of SCFAs followed first-order kinetics. The hydrolysis and SCFAs accumulation rate constants increased with increasing temperature from 10 to 35℃, which could be described by the Arrhenius equation. The kinetic data further indicated that SCFAs production at pH 10 was a biological process. Compared with the experiment of pH uncontrolled (blank test), both the rate constants of WAS hydrolysis and SCFAs accumulation at 20℃ were improved significantly when WAS was fermented at pH 10.展开更多
The process of using flat-sheet membrane for simultaneous sludge thickening and digestion (MSTD) was employed. The variations of sludge concentration and rheology were characterized and simulated. Based on mass bala...The process of using flat-sheet membrane for simultaneous sludge thickening and digestion (MSTD) was employed. The variations of sludge concentration and rheology were characterized and simulated. Based on mass balance analysis, mathematical models were developed and successfully used to predict and evaluate the variations of sludge concentration and the digestion efficiency in the MSTD process. The apparent viscosity of sludge could be modeled as functions of mixed liquor suspended solids and shear rates. The sludge in the MSTD process showed both shear-thinning and viscoplastic behaviour, and under various shear rates different rheological models could be chosen to predict their flow behaviour. It was also found that sludge concentration and viscosity had significant correlations with membrane fouling in the MSTD process.展开更多
We investigated the communities of ammonia-oxidizing bacteria (AOB) in activated sludge collected from eight wastewater treatment systems using polymerase chain reaction (PCR) followed by terminal restriction frag...We investigated the communities of ammonia-oxidizing bacteria (AOB) in activated sludge collected from eight wastewater treatment systems using polymerase chain reaction (PCR) followed by terminal restriction fragment length polymorphism (T-RFLP), cloning, and sequencing of the α-subunit of the ammonia monooxygenase gene (amoA). The T-RFLP fingerprint analyses showed that different wastewater treatment systems harbored distinct AOB communities. However, there was no remarkable difference among the AOB T- RFLP profiles from different parts of the same system. The T-RFLP fingerprints showed that a full-scale wastewater treatment plant (WWTP) contained a larger number of dominant AOB species than a pilot-scale reactor. The source of influent affected the AOB community, and the WWTPs treating domestic wastewater contained a higher AOB diversity than those receiving mixed domestic and industrial wastewater. However, the AOB community structure was little affected by the treatment process in this study. Phylogenetic analysis of the cloned amoA genes clearly indicated that all the dominant AOB in the systems was closely related to Nitrosomonas spp. not to Nitrosospira spp. Members of the Nitrosomonas oligotropha and Nitrosomonas communis clusters were found in all samples, while members of Nitrosomonas europaea cluster occurred in some systems.展开更多
Diatomite is a kind of natural low-cost mineral material. It has a number of unique physical properties and has been widely used as an adsorbent in wastewater treatment. This study was conducted to investigate the aer...Diatomite is a kind of natural low-cost mineral material. It has a number of unique physical properties and has been widely used as an adsorbent in wastewater treatment. This study was conducted to investigate the aerobic biodegradation of coal gasification wastewater with and without diatomite addition. Experimental results indicated that diatomite added in the activated sludge system could promote the biomass and also enhance the performance of the sludge settling. The average mixed-liquor volatile suspended solids (MLVSS) is increased from 4055 mg.L^-1 to 4518 mg.L^-1 and the average settling volume (SV) are changed only from 45.9% to 47.1%. Diatomite additive could enhance the efficiency of chemical oxygen demand (COD) and total phenols removal from the wastewater. The COD removal increased from 73.3% to near 80% and the total phenols removal increased from 81.4% to 85.8%. The mechanisms of the increase of biomass and pollutants removal may correlates to the improvement of bioavailability and sludge settlement characteristics by diatomite added. Micrograph of the sludge in the diatomite-activated sludge system indicated that the diatomite added could be the carrier of the microbe and also affect the biomass and pollutant removal.展开更多
Due to the large-scale production and wide applications, many nanoparticles(NPs) enter wastewater treatment plants and accumulate in activated sludge. It is reported that titanium dioxide(Ti O2) NPs show severe damage...Due to the large-scale production and wide applications, many nanoparticles(NPs) enter wastewater treatment plants and accumulate in activated sludge. It is reported that titanium dioxide(Ti O2) NPs show severe damage to many model microbes. However, it is still unknown whether the long-term(e.g., 100 d) presence of Ti O2 NPs would affect the performance of sludge fermentation. In this study, long-term exposure experiments(105 d)were conducted to investigate the potential risk of Ti O2 NPs to sludge fermentation system. It is found that the presence of environmentally relevant [6 mg·(g TSS)-1] and higher [150 mg·(g TSS)-1] concentrations of Ti O2 NPs does not affect methane production from sludge fermentation. The analysis of fluorescence in situ hybridization indicates that these concentrations of Ti O2 NPs present marginal influences on abundances of bacteria and methanogenic archaea in sludge fermentation system. The viability of sludge microorganisms and activities of key enzymes related to methane production such as protease, acetate kinase, and coenzyme F420 are unchanged by the long-term presence of 6 and 150 mg·(g TSS)-1of Ti O2 NPs. Further investigations reveal that the insolubility of NPs and the protection role of sludge extracellular polymeric substances are the main reasons for the marginal influence of Ti O2 NPs on sludge fermentation.展开更多
Biosorption of heavy metal ions,such as Cu2+,Cd2+ and Zn2+,was carried out using waste activated sludge from municipal sewage treatment plant as adsorption material,and the effects of parameters,such as pH value,tempe...Biosorption of heavy metal ions,such as Cu2+,Cd2+ and Zn2+,was carried out using waste activated sludge from municipal sewage treatment plant as adsorption material,and the effects of parameters,such as pH value,temperature,reaction time and sorption duration,were studied in detail.The results indicate that the removal rates of Cu2+,Zn2+ and Cd2+ with low concentration are 96.47%,80% and 90%,respectively,adsorbed by waste activated sludge.Little effect of dosage of activated sludge on the adsorption of Cu2+ and more effects on the adsorption of Zn2+and Cd2+ are observed.Little effect of temperature is observed,while pH value and adsorption time exert important influence on the sorption process.The adsorption behaviors of heavy metal ions all have parabolic relationships with pH value.The optimum pH value is between 6 and 10,and the optimum adsorption time is 1 h.In single heavy metal ion system,the sorption processes of Cu2+,Zn2+ and Cd2+ are in accordance with Freundlich model,which indicates that it is suitable for the treatment of these three heavy metal ions using intermittent operation.In addition,the sorption capacity of the sludge for Cu2+ is preferential to the other two ions.展开更多
To develop technically feasible and economically favorable dynamic process control(DPC)strategies for an alternating activated sludge(AAS)system,a bench-scale continuous-flow alternating aerobic and anoxic reactor,per...To develop technically feasible and economically favorable dynamic process control(DPC)strategies for an alternating activated sludge(AAS)system,a bench-scale continuous-flow alternating aerobic and anoxic reactor,performing short-cut nitrogen removal from real domestic wastewater was operated under different control strategies for more than five months.A fixed-time control(FTC) study showed that bending-points on pH and oxidation-reduction potential(ORP)profiles accurately coincided with the major biologic...展开更多
Adsorption is an important process in wastewater treatment,and conversion of waste materials to adsorbent offers a solution to high material cost related to the use of commercial activated carbon.This study investigat...Adsorption is an important process in wastewater treatment,and conversion of waste materials to adsorbent offers a solution to high material cost related to the use of commercial activated carbon.This study investigated the adsorption behaviour of Reactive Black 5(RB5)and methylene blue(MB)onto activated carbon produced from textile sludge(TSAC).The activated carbon was synthesized through chemical activation of precursor followed with carbonization at 650℃ under nitrogen flow.Effects of time(0–200 min),pH(2–10),temperature(25–60℃),initial dye concentration(0–200 mg·L^-1),and adsorbent dosage(0.01–0.15 g)on dye removal efficiency were investigated.Preliminary screening revealed that TSAC synthesized via H2SO4activation showed higher adsorption behaviour than TSAC activated by KCl and ZnCl2.The adsorption capacity of TSAC was found to be 11.98 mg·g^-1(RB5)and 13.27 mg·g^-1(MB),and is dependent on adsorption time and initial dye concentration.The adsorption data for both dyes were well fitted to Freundlich isotherm model which explains the heterogeneous nature of TSAC surface.The dye adsorption obeyed pseudo-second order kinetic model,thus chemisorption was the controlling step.This study reveals potential of textile sludge in removal of dyes from aqueous solution,and further studies are required to establish the applicability of the synthesized adsorbent for the treatment of waste water containing toxic dyes from textile industry.展开更多
The Activated Sludge Process(ASP) exhibits highly nonlinear properties. The design of an automatic control system that is robust against disturbance of inlet wastewater flow rate and has short process settling times i...The Activated Sludge Process(ASP) exhibits highly nonlinear properties. The design of an automatic control system that is robust against disturbance of inlet wastewater flow rate and has short process settling times is a challenging matter. The proposed control method is an I-P modi fied controller automatic control system with state variable feedback and control canonical form simulation diagram for the process. A more stable response is achieved with this type of modern control. Settling times of 0.48 days are achieved for the concentration of microorganisms,(reference value step increase of 50 mg·L-1) and 0.01 days for the concentration of oxygen(reference value step increase of 0.1 mg·L-1). Fluctuations of concentrations of oxygen and microorganisms after an inlet disturbance of5 × 103m3·d-1are small. Changes in the reference values of oxygen and microorganisms(increases by 10%, 20% and 30%) show satisfactory response of the system in all cases. Changes in the value of inlet wastewater flow rate disturbance(increases by 10%, 25%, 50% and 100%) are stabilized by the control system in short time. Maximum percent overshoot is also taken in consideration in all cases and the largest value is 25% which is acceptable. The proposed method with I-P controller is better for disturbance rejection and process settling times compared to the same method using PI controller. This method can substitute optimal control systems in ASP.展开更多
This study is a contribution to the optimization of organic fraction of municipal waste bioconversion into biomethane, by activated sludge production as inoculum for digesters. The wastewater (WW) and cow dung (CD) sa...This study is a contribution to the optimization of organic fraction of municipal waste bioconversion into biomethane, by activated sludge production as inoculum for digesters. The wastewater (WW) and cow dung (CD) samples were taken from the slaughterhouse of Ouagadougou town, Burkina Faso. Different mixtures were made, enriched with mineral solution and cellulose at 5% (w/v) as: 10% CD + 90% WW (C7), 30% CD + 70% WW (C6), 50% CD + 50% WW (C5), 70% CD + 30% WW (C4), 90% CD + 10% WW (C3), 100% CD (C2) and 100% WW (C1). The pH evolution and biogas (CH4 and CO2) production were followed for 25 days. Cultures tend to acidify with increase in cow dung proportion. Biogas production was significantly higher (p < 0.05) in C5 (880.0 mL), C6 (862.0 10 mL) and C7 (772.0 mL). Mixture C5 had a highest level of CO2 production (40%). Also C7 and C6 retained in the experiment contained respectively organic matter, volatile fatty acids (VFA) and total alkalinity (TAC) as 41.06%, 47.02%, 1320 mg acetic acid/L, 3036 mg Acetic acid/L and 520 mg CaCO3/L, 1310 mg CaCO3/L. Mixture C6 was the best medium for microorganism proliferation stability with 3.5 × 105 UFC/ml of methanogens bacteria. It also possessed buffering capacity, which prevents acidification of medium during VFAs production.展开更多
Aerobically activated sludge processing was carried out to treat terylene artificial silk printing and dyeing wastewater (TPD wastewater) in a lab-scale experiment, focusing on the kinetics of the COD removal. The kin...Aerobically activated sludge processing was carried out to treat terylene artificial silk printing and dyeing wastewater (TPD wastewater) in a lab-scale experiment, focusing on the kinetics of the COD removal. The kinetics pa-rameters determined from experiment were applied to evaluate the biological treatability of wastewater. Experiments showed that COD removal could be divided into two stages, in which the ratio BOD/COD (B/C) was the key factor for stage division. At the rapid-removal stage with B/C>0.1, COD removal could be described by a zero order reaction. At the mod-erate-removal stage with B/C<0.1, COD removal could be described by a first order reaction. Then Monod equation was introduced to indicate COD removal. The reaction rate constant (K) and half saturation constant (KS) were 0.0208-0.0642 L/(gMLSS)h and 0.44-0.59 (gCOD)/L respectively at 20 C-35 C. Activation energy (Ea) was 6.05104 J/mol. By comparison of kinetic parameters, the biological treatability of TPD wastewater was superior to that of traditional textile wastewater. But COD removal from TPD-wastewater was much more difficult than that from domestic and industrial wastewater, such as papermaking, beer, phenol wastewater, etc. The expected effluent quality strongly related to un-biodegradable COD and kinetics rather than total COD. The results provide useful basis for further scaling up and efficient operation of TPD wastewater treatment.展开更多
This study evaluated the effect of potassium ferrate(PF)and low-temperature thermal hydrolysis co-pretreatment on the promotion of sludge hydrolysis process and the impact on acid production in the subsequent anaerobi...This study evaluated the effect of potassium ferrate(PF)and low-temperature thermal hydrolysis co-pretreatment on the promotion of sludge hydrolysis process and the impact on acid production in the subsequent anaerobic digestion process.The analytical investigations showed that co-pretreatment significantly facilitated the hydrolysis process of the sludge and contributed to the accumulation of short-chain fatty acids(SCFAs).The pretreatment conditions under the optimal leaching of organic matter from sludge were hydrothermal temperature of 75℃,hydrothermal treatment time of 12 h,and PF dosage of 0.25 g g^(−1)TSS(total suspended solids),according to the results of orthogonal experiments.By pretreatment under proper conditions,the removal rate of soluble chemical oxygen demand(SCOD)achieved 71.8%at the end of fermentation and the removal rate of total phosphorus(TP)was 69.1%.The maximum yield of SCFAs was 750.3 mg L^(−1),7.45 times greater than that of the blank group.Based on the analysis of the anaerobic digestion mechanism,it was indicated that the co-pretreatment could destroy the floc structure on the sludge surface and improve organic matter dissolving,resulting in more soluble organic substances for the acidification process.Furthermore,microbial community research revealed that the main cause of enhanced SCFAs generation was an increase in acidogenic bacteria and a reduction of methanogenic bacteria.展开更多
Experiments were conducted to study the performance characters of aerobic/anoxic (A/ A) digestion of sludge at 30± 1 ℃, while the sludge retention time (SRT) was kept 16 d. The varia tions of oxidation redu...Experiments were conducted to study the performance characters of aerobic/anoxic (A/ A) digestion of sludge at 30± 1 ℃, while the sludge retention time (SRT) was kept 16 d. The varia tions of oxidation reduction potential (Eh ) and pH were continuously monitored during the A/A di gestion and the conversions of ammonium and nitrate were investigated. Important features on both Eh and pH profiles were identified to develop process control strategy. Since the feature point on Eh profile where d2 Eh/dt^2 =0 is very stable during anoxic cycle, it can be used to determine the end of denitrification. The end of nitrification can be identified according to dpH/dt = 0. A real-time control strategy of A/A digestion of sludge was developed and tested with pH and Eh as control parameters. It is shown that the performance of the real-time control strategy is better than that of a fixed time control strategy. While the real time controlled A/A digestion system can achieve a similar volatile suspended solids (VSS) destruction efficiency of 35.2 % as a continuously aerated system, it im proves the supernatant quality in a shorter aeration time(7. 75 d for a 20 d period).展开更多
Mesophilic and thermophilic anaerobic fermentation performance of waste activated sludge(WAS)pretreated by enzymes catalysis associated with microbial community shifts were investigated.WAS disintegration was boosted ...Mesophilic and thermophilic anaerobic fermentation performance of waste activated sludge(WAS)pretreated by enzymes catalysis associated with microbial community shifts were investigated.WAS disintegration was boosted considerably by enzymolysis with 8750 mg/L of soluble COD release within 180 min.Mesophilic anaerobic fermentation(MAF)produced nearly equal VFA accumulation with over 3200 mg COD/L compared with that of thermophilic fermentation(TAF).Bacterial community consortia showed great shifting differences in dynamics of main T⁃RFs between MAF and TAF.Moreover,MAF was conducive to form intermediate bacterial community evenness compared to TAF,which preserved a robust function of VFA production.The enzymes catalysis prompted bio⁃energy(electricity)recovery potential of WAS organics via anaerobic fermentation(MAF/TAF)with evaluating electricity conversion efficiency of 0.75-0.82 kW·h/kg VSS(3.9 times higher than control test).Finally,this study proposed some novel thinking on future WAS treatment/management towards energy recovery coupled with energy⁃sufficient wastewater treatment by co⁃locating WAS anaerobic fermentation,MFC plant with wastewater treatment plant(s).展开更多
Organic triazophos wastewater was continuously treated with Rhodopseudomonas capsulatus and activated carbon and activated sludge system(PACT AS) in a plug bioreactor. A kinetic model of PACT AS wastewater trea...Organic triazophos wastewater was continuously treated with Rhodopseudomonas capsulatus and activated carbon and activated sludge system(PACT AS) in a plug bioreactor. A kinetic model of PACT AS wastewater treatment system was established to provide an useful basis for further simulate scale up treatment of toxic organic wastewater.展开更多
The chemical compositions of the sludge after treatment are tested by fully chemical analysis techniques. Its crystalline phase structure changes of the sludge calcined at different temperature are characterized by XR...The chemical compositions of the sludge after treatment are tested by fully chemical analysis techniques. Its crystalline phase structure changes of the sludge calcined at different temperature are characterized by XRD method. Nitrogen gas isothermal adsorption method (77 K) is applied to measure the influences of ammonium bicarbonate on specific surface area and pore structure of activated alumina synthesized from waste aluminum sludge. The result shows that the amount of Al2O3 in the sludge accounts for more than 94%, and Na2Owt% in a 0.1-0.2% range. By calcining raw sludge at 600℃, monophase γ-Al2O3 is obtained. And this can satisfy the performance requirements of activated alumina adsorbent. The specific surface area of the specimen with NH4HCO3 added has expanded from 179 to 249 m^2/g and the pore volume from 0.25 to 1.11 cm^3/g as well as the average pore diameter from 5.6 to 17.8 nm. All these show that NH4HCO3 is an effective pore-expansion agent to remarkably improve the structure and performance of activated alumina synthesized from waste aluminum sludge.展开更多
基金supported by the National Natural Science Foundation of China(No.41276067)the Air Liquide(China)R&D Co.,Ltd.(No.20200216).
文摘The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were explored in this work.Experimental results showed that 0.2 g PF(g TSS)^(-1)(total suspended solid)combined with 0.02 g TS(g TSS)^(-1) could further improve SCFAs’production,and the maximum SCFAs content reached 2008.7 mg COD L^(-1),which is 1.2 and 4.5 times higher than those with PF and TS individually added,respectively,and 5.3 times higher than that of blank WAS on Day 12.In the model substrates experiments,the degradation rates of bovine serum albumin and dextran with combination of PF and TS were 41.3%±0.1% and 48.5%±0.06%,respectively,on Day 3,which are lower than those in blank WAS(with degradation rates of 72.3%±0.5%and 90.3%±0.3%).It was revealed that the oxidative effect of PF and the solubilization of TS caused more organic matters to be dissolved out from WAS,providing a large number of biodegradable substances for subsequent SCFAs production.While WAS pretreated with the combination of PF and TS,the relative abundances of Firmicutes increased from 6.4%(blank)to 38.6%,and that of Proteobacteria decreased from 41.8%(blank)to 21.8%.The combination of PF and TS promoted the hydrolysis process of WAS by enriching Firmicutes,and then increased acetic acid production by inhibiting Proteobacteria that consumed SCFAs.Meanwhile,at the genus level,acidogenesis bacteria(e.g.,Proteiniclasticum and Petrimonas)were enriched whereas SCFAs consuming bacteria(e.g.,Dokdonella)were inhibited.
文摘This paper researched a promising biological treatment of methyl violet waste water by methods of activated sludge.Effects of temperature and pH were studied on this process.Kinetic equation of the substrate biodegradation was investigated in the experimental range.It was studied and simulated that flow within the bubble region of this bioreactor according to the κ ε two fluid equation.Simulation results agree well with experimental data.
基金Supported by the National High Technology Research and Development Program of China(2007AA06Z326)the Programfor New Century Excellent Talents(06-0373)in University
文摘Activated sludge process has been widely used to remove phosphorus and nitrogen from wastewater. However,the nitrogen and phosphorus removal is sometimes unsatisfactory due to the low influent COD.Another problem with the activated sludge process is that large amount of waste activated sludge is produced,which needs further treatment.In this study,the waste activated sludge alkaline fermentation liquid was used as the main carbon source for phosphorus and nitrogen removal under anaerobic followed by alternating aerobic-anoxic conditions,and the results were compared with those using acetic acid as the carbon source.The use of alkaline fermentation liquid not only affected the transformations of phosphorus,nitrogen,intracellular polyhydroxyalkanoates and glycogen, but also led to higher removal efficiencies for phosphorus and nitrogen compared with acetic acid.It was observed that ammonium was completely removed with either alkaline fermentation liquid or acetic acid as the carbon source. However,the former resulted in higher removal efficiencies for phosphorus(95%)and nitrogen(82%),while the latter showed lower ones(87%and 74%,respectively).The presence of a large amount of propionic acid in the alkaline fermentation liquid was one possible reason for its higher phosphorus removal efficiency.Exogenous instead of endogenous denitrification was the main pathway for nitrogen removal with the alkaline fermentation liquid as the carbon source,which was responsible for its higher nitrogen removal efficiency.It seems that the alkaline fermentation liquid can replace acetic acid as the carbon source for phosphorus and nitrogen removal in anaerobic fol- lowed by alternating aerobic-anoxic sequencing batch reactor.
基金supported by the Hi-TechResearch and Development Program (863) of China(No. 2007AA06Z326)the Key Projects of National Wa-ter Pollution Control and Management of China (No.2008ZX07315-003, 2008ZX07316-002)the Key Lab-oratory of Environmental Science and Engineering ofJiangsu Province (No. ZD071201).
文摘The accumulation of short-chain fatty acids (SCFAs), a preferred carbon source for enhanced biological phosphorus removal microbes, was significantly improved when waste activated sludge (WAS) was fermented at pH 10. The kinetics of WAS hydrolysis and SCFAs production at pH 10 was investigated. It was observed that during WAS anaerobic fermentation the accumulation of SCFAs was limited by the hydrolysis process, and both the hydrolysis of WAS particulate COD and the accumulation of SCFAs followed first-order kinetics. The hydrolysis and SCFAs accumulation rate constants increased with increasing temperature from 10 to 35℃, which could be described by the Arrhenius equation. The kinetic data further indicated that SCFAs production at pH 10 was a biological process. Compared with the experiment of pH uncontrolled (blank test), both the rate constants of WAS hydrolysis and SCFAs accumulation at 20℃ were improved significantly when WAS was fermented at pH 10.
基金supported by the Foundation of Chinese State Key Laboratory of Pollution Control and Resource Reuse for Young Scholars (No. PCRRY08005)by the Science and Technology Commission of Shanghai Municipality (No. 08231200200)
文摘The process of using flat-sheet membrane for simultaneous sludge thickening and digestion (MSTD) was employed. The variations of sludge concentration and rheology were characterized and simulated. Based on mass balance analysis, mathematical models were developed and successfully used to predict and evaluate the variations of sludge concentration and the digestion efficiency in the MSTD process. The apparent viscosity of sludge could be modeled as functions of mixed liquor suspended solids and shear rates. The sludge in the MSTD process showed both shear-thinning and viscoplastic behaviour, and under various shear rates different rheological models could be chosen to predict their flow behaviour. It was also found that sludge concentration and viscosity had significant correlations with membrane fouling in the MSTD process.
基金supported by the Key Projects in National Science & Technology Pillar Program during the Eleventh Five-Year Plan Period (No.2006BAC19B01-02)the Mega-projects of Science Research for Water (No.2008ZX07313-3)the Program of Introducing Talents of Discipline to Universities
文摘We investigated the communities of ammonia-oxidizing bacteria (AOB) in activated sludge collected from eight wastewater treatment systems using polymerase chain reaction (PCR) followed by terminal restriction fragment length polymorphism (T-RFLP), cloning, and sequencing of the α-subunit of the ammonia monooxygenase gene (amoA). The T-RFLP fingerprint analyses showed that different wastewater treatment systems harbored distinct AOB communities. However, there was no remarkable difference among the AOB T- RFLP profiles from different parts of the same system. The T-RFLP fingerprints showed that a full-scale wastewater treatment plant (WWTP) contained a larger number of dominant AOB species than a pilot-scale reactor. The source of influent affected the AOB community, and the WWTPs treating domestic wastewater contained a higher AOB diversity than those receiving mixed domestic and industrial wastewater. However, the AOB community structure was little affected by the treatment process in this study. Phylogenetic analysis of the cloned amoA genes clearly indicated that all the dominant AOB in the systems was closely related to Nitrosomonas spp. not to Nitrosospira spp. Members of the Nitrosomonas oligotropha and Nitrosomonas communis clusters were found in all samples, while members of Nitrosomonas europaea cluster occurred in some systems.
基金Supported by the Shanghai Committee of Education (07ZZ158)
文摘Diatomite is a kind of natural low-cost mineral material. It has a number of unique physical properties and has been widely used as an adsorbent in wastewater treatment. This study was conducted to investigate the aerobic biodegradation of coal gasification wastewater with and without diatomite addition. Experimental results indicated that diatomite added in the activated sludge system could promote the biomass and also enhance the performance of the sludge settling. The average mixed-liquor volatile suspended solids (MLVSS) is increased from 4055 mg.L^-1 to 4518 mg.L^-1 and the average settling volume (SV) are changed only from 45.9% to 47.1%. Diatomite additive could enhance the efficiency of chemical oxygen demand (COD) and total phenols removal from the wastewater. The COD removal increased from 73.3% to near 80% and the total phenols removal increased from 81.4% to 85.8%. The mechanisms of the increase of biomass and pollutants removal may correlates to the improvement of bioavailability and sludge settlement characteristics by diatomite added. Micrograph of the sludge in the diatomite-activated sludge system indicated that the diatomite added could be the carrier of the microbe and also affect the biomass and pollutant removal.
基金Supported by the National Hi-Tech Research and Development Program of China(863Program)(2011AA060903)the National Natural Science Foundation of China(41301558and 51278354)Shanghai Tongji Gao Tingyao Environmental Science & Technology Development Foundation(STGEF)
文摘Due to the large-scale production and wide applications, many nanoparticles(NPs) enter wastewater treatment plants and accumulate in activated sludge. It is reported that titanium dioxide(Ti O2) NPs show severe damage to many model microbes. However, it is still unknown whether the long-term(e.g., 100 d) presence of Ti O2 NPs would affect the performance of sludge fermentation. In this study, long-term exposure experiments(105 d)were conducted to investigate the potential risk of Ti O2 NPs to sludge fermentation system. It is found that the presence of environmentally relevant [6 mg·(g TSS)-1] and higher [150 mg·(g TSS)-1] concentrations of Ti O2 NPs does not affect methane production from sludge fermentation. The analysis of fluorescence in situ hybridization indicates that these concentrations of Ti O2 NPs present marginal influences on abundances of bacteria and methanogenic archaea in sludge fermentation system. The viability of sludge microorganisms and activities of key enzymes related to methane production such as protease, acetate kinase, and coenzyme F420 are unchanged by the long-term presence of 6 and 150 mg·(g TSS)-1of Ti O2 NPs. Further investigations reveal that the insolubility of NPs and the protection role of sludge extracellular polymeric substances are the main reasons for the marginal influence of Ti O2 NPs on sludge fermentation.
基金Project(50508044) supported by the National Natural Science Foundation of ChinaProject(05SK1003-1) supported by Key Project of Science and Technology Plan of Huana Province,China
文摘Biosorption of heavy metal ions,such as Cu2+,Cd2+ and Zn2+,was carried out using waste activated sludge from municipal sewage treatment plant as adsorption material,and the effects of parameters,such as pH value,temperature,reaction time and sorption duration,were studied in detail.The results indicate that the removal rates of Cu2+,Zn2+ and Cd2+ with low concentration are 96.47%,80% and 90%,respectively,adsorbed by waste activated sludge.Little effect of dosage of activated sludge on the adsorption of Cu2+ and more effects on the adsorption of Zn2+and Cd2+ are observed.Little effect of temperature is observed,while pH value and adsorption time exert important influence on the sorption process.The adsorption behaviors of heavy metal ions all have parabolic relationships with pH value.The optimum pH value is between 6 and 10,and the optimum adsorption time is 1 h.In single heavy metal ion system,the sorption processes of Cu2+,Zn2+ and Cd2+ are in accordance with Freundlich model,which indicates that it is suitable for the treatment of these three heavy metal ions using intermittent operation.In addition,the sorption capacity of the sludge for Cu2+ is preferential to the other two ions.
文摘To develop technically feasible and economically favorable dynamic process control(DPC)strategies for an alternating activated sludge(AAS)system,a bench-scale continuous-flow alternating aerobic and anoxic reactor,performing short-cut nitrogen removal from real domestic wastewater was operated under different control strategies for more than five months.A fixed-time control(FTC) study showed that bending-points on pH and oxidation-reduction potential(ORP)profiles accurately coincided with the major biologic...
基金the Ministry of Higher Education,Malaysia(MOHE)for the financial supports received under University Grant(08H05)and Fundamental Research Grant Scheme(4F872)Universiti Teknologi Malaysia for the GUP grant No.17H65the support to the main author,Wong Syie Luing,in the form of Post-Doctoral Fellowship Scheme for the project"Catalytic Cracking of Low Density Polyethylene Waste to Liquid Fuels in Fixed Bed Reactor"
文摘Adsorption is an important process in wastewater treatment,and conversion of waste materials to adsorbent offers a solution to high material cost related to the use of commercial activated carbon.This study investigated the adsorption behaviour of Reactive Black 5(RB5)and methylene blue(MB)onto activated carbon produced from textile sludge(TSAC).The activated carbon was synthesized through chemical activation of precursor followed with carbonization at 650℃ under nitrogen flow.Effects of time(0–200 min),pH(2–10),temperature(25–60℃),initial dye concentration(0–200 mg·L^-1),and adsorbent dosage(0.01–0.15 g)on dye removal efficiency were investigated.Preliminary screening revealed that TSAC synthesized via H2SO4activation showed higher adsorption behaviour than TSAC activated by KCl and ZnCl2.The adsorption capacity of TSAC was found to be 11.98 mg·g^-1(RB5)and 13.27 mg·g^-1(MB),and is dependent on adsorption time and initial dye concentration.The adsorption data for both dyes were well fitted to Freundlich isotherm model which explains the heterogeneous nature of TSAC surface.The dye adsorption obeyed pseudo-second order kinetic model,thus chemisorption was the controlling step.This study reveals potential of textile sludge in removal of dyes from aqueous solution,and further studies are required to establish the applicability of the synthesized adsorbent for the treatment of waste water containing toxic dyes from textile industry.
文摘The Activated Sludge Process(ASP) exhibits highly nonlinear properties. The design of an automatic control system that is robust against disturbance of inlet wastewater flow rate and has short process settling times is a challenging matter. The proposed control method is an I-P modi fied controller automatic control system with state variable feedback and control canonical form simulation diagram for the process. A more stable response is achieved with this type of modern control. Settling times of 0.48 days are achieved for the concentration of microorganisms,(reference value step increase of 50 mg·L-1) and 0.01 days for the concentration of oxygen(reference value step increase of 0.1 mg·L-1). Fluctuations of concentrations of oxygen and microorganisms after an inlet disturbance of5 × 103m3·d-1are small. Changes in the reference values of oxygen and microorganisms(increases by 10%, 20% and 30%) show satisfactory response of the system in all cases. Changes in the value of inlet wastewater flow rate disturbance(increases by 10%, 25%, 50% and 100%) are stabilized by the control system in short time. Maximum percent overshoot is also taken in consideration in all cases and the largest value is 25% which is acceptable. The proposed method with I-P controller is better for disturbance rejection and process settling times compared to the same method using PI controller. This method can substitute optimal control systems in ASP.
文摘This study is a contribution to the optimization of organic fraction of municipal waste bioconversion into biomethane, by activated sludge production as inoculum for digesters. The wastewater (WW) and cow dung (CD) samples were taken from the slaughterhouse of Ouagadougou town, Burkina Faso. Different mixtures were made, enriched with mineral solution and cellulose at 5% (w/v) as: 10% CD + 90% WW (C7), 30% CD + 70% WW (C6), 50% CD + 50% WW (C5), 70% CD + 30% WW (C4), 90% CD + 10% WW (C3), 100% CD (C2) and 100% WW (C1). The pH evolution and biogas (CH4 and CO2) production were followed for 25 days. Cultures tend to acidify with increase in cow dung proportion. Biogas production was significantly higher (p < 0.05) in C5 (880.0 mL), C6 (862.0 10 mL) and C7 (772.0 mL). Mixture C5 had a highest level of CO2 production (40%). Also C7 and C6 retained in the experiment contained respectively organic matter, volatile fatty acids (VFA) and total alkalinity (TAC) as 41.06%, 47.02%, 1320 mg acetic acid/L, 3036 mg Acetic acid/L and 520 mg CaCO3/L, 1310 mg CaCO3/L. Mixture C6 was the best medium for microorganism proliferation stability with 3.5 × 105 UFC/ml of methanogens bacteria. It also possessed buffering capacity, which prevents acidification of medium during VFAs production.
文摘Aerobically activated sludge processing was carried out to treat terylene artificial silk printing and dyeing wastewater (TPD wastewater) in a lab-scale experiment, focusing on the kinetics of the COD removal. The kinetics pa-rameters determined from experiment were applied to evaluate the biological treatability of wastewater. Experiments showed that COD removal could be divided into two stages, in which the ratio BOD/COD (B/C) was the key factor for stage division. At the rapid-removal stage with B/C>0.1, COD removal could be described by a zero order reaction. At the mod-erate-removal stage with B/C<0.1, COD removal could be described by a first order reaction. Then Monod equation was introduced to indicate COD removal. The reaction rate constant (K) and half saturation constant (KS) were 0.0208-0.0642 L/(gMLSS)h and 0.44-0.59 (gCOD)/L respectively at 20 C-35 C. Activation energy (Ea) was 6.05104 J/mol. By comparison of kinetic parameters, the biological treatability of TPD wastewater was superior to that of traditional textile wastewater. But COD removal from TPD-wastewater was much more difficult than that from domestic and industrial wastewater, such as papermaking, beer, phenol wastewater, etc. The expected effluent quality strongly related to un-biodegradable COD and kinetics rather than total COD. The results provide useful basis for further scaling up and efficient operation of TPD wastewater treatment.
基金supported by the National Natural Science Foundation of China(No.41276067)the Air Liquide(China)R&D Co.,Ltd.(No.20200216).
文摘This study evaluated the effect of potassium ferrate(PF)and low-temperature thermal hydrolysis co-pretreatment on the promotion of sludge hydrolysis process and the impact on acid production in the subsequent anaerobic digestion process.The analytical investigations showed that co-pretreatment significantly facilitated the hydrolysis process of the sludge and contributed to the accumulation of short-chain fatty acids(SCFAs).The pretreatment conditions under the optimal leaching of organic matter from sludge were hydrothermal temperature of 75℃,hydrothermal treatment time of 12 h,and PF dosage of 0.25 g g^(−1)TSS(total suspended solids),according to the results of orthogonal experiments.By pretreatment under proper conditions,the removal rate of soluble chemical oxygen demand(SCOD)achieved 71.8%at the end of fermentation and the removal rate of total phosphorus(TP)was 69.1%.The maximum yield of SCFAs was 750.3 mg L^(−1),7.45 times greater than that of the blank group.Based on the analysis of the anaerobic digestion mechanism,it was indicated that the co-pretreatment could destroy the floc structure on the sludge surface and improve organic matter dissolving,resulting in more soluble organic substances for the acidification process.Furthermore,microbial community research revealed that the main cause of enhanced SCFAs generation was an increase in acidogenic bacteria and a reduction of methanogenic bacteria.
基金Supported by the National High Technology Research and Development Program of China("863"Program)(2006AA06Z319)the National Key Technology R&D Programof the 11th Five-Year Plan China(2007BAK36B07)the Research Foundation for Youth Scholars of Beijing Technology and Business University(QNJJ-28)
文摘Experiments were conducted to study the performance characters of aerobic/anoxic (A/ A) digestion of sludge at 30± 1 ℃, while the sludge retention time (SRT) was kept 16 d. The varia tions of oxidation reduction potential (Eh ) and pH were continuously monitored during the A/A di gestion and the conversions of ammonium and nitrate were investigated. Important features on both Eh and pH profiles were identified to develop process control strategy. Since the feature point on Eh profile where d2 Eh/dt^2 =0 is very stable during anoxic cycle, it can be used to determine the end of denitrification. The end of nitrification can be identified according to dpH/dt = 0. A real-time control strategy of A/A digestion of sludge was developed and tested with pH and Eh as control parameters. It is shown that the performance of the real-time control strategy is better than that of a fixed time control strategy. While the real time controlled A/A digestion system can achieve a similar volatile suspended solids (VSS) destruction efficiency of 35.2 % as a continuously aerated system, it im proves the supernatant quality in a shorter aeration time(7. 75 d for a 20 d period).
基金Sponsored by the Scientific Research Funds of Huaqiao University(Grant No.605-50Y18055).
文摘Mesophilic and thermophilic anaerobic fermentation performance of waste activated sludge(WAS)pretreated by enzymes catalysis associated with microbial community shifts were investigated.WAS disintegration was boosted considerably by enzymolysis with 8750 mg/L of soluble COD release within 180 min.Mesophilic anaerobic fermentation(MAF)produced nearly equal VFA accumulation with over 3200 mg COD/L compared with that of thermophilic fermentation(TAF).Bacterial community consortia showed great shifting differences in dynamics of main T⁃RFs between MAF and TAF.Moreover,MAF was conducive to form intermediate bacterial community evenness compared to TAF,which preserved a robust function of VFA production.The enzymes catalysis prompted bio⁃energy(electricity)recovery potential of WAS organics via anaerobic fermentation(MAF/TAF)with evaluating electricity conversion efficiency of 0.75-0.82 kW·h/kg VSS(3.9 times higher than control test).Finally,this study proposed some novel thinking on future WAS treatment/management towards energy recovery coupled with energy⁃sufficient wastewater treatment by co⁃locating WAS anaerobic fermentation,MFC plant with wastewater treatment plant(s).
文摘Organic triazophos wastewater was continuously treated with Rhodopseudomonas capsulatus and activated carbon and activated sludge system(PACT AS) in a plug bioreactor. A kinetic model of PACT AS wastewater treatment system was established to provide an useful basis for further simulate scale up treatment of toxic organic wastewater.
文摘The chemical compositions of the sludge after treatment are tested by fully chemical analysis techniques. Its crystalline phase structure changes of the sludge calcined at different temperature are characterized by XRD method. Nitrogen gas isothermal adsorption method (77 K) is applied to measure the influences of ammonium bicarbonate on specific surface area and pore structure of activated alumina synthesized from waste aluminum sludge. The result shows that the amount of Al2O3 in the sludge accounts for more than 94%, and Na2Owt% in a 0.1-0.2% range. By calcining raw sludge at 600℃, monophase γ-Al2O3 is obtained. And this can satisfy the performance requirements of activated alumina adsorbent. The specific surface area of the specimen with NH4HCO3 added has expanded from 179 to 249 m^2/g and the pore volume from 0.25 to 1.11 cm^3/g as well as the average pore diameter from 5.6 to 17.8 nm. All these show that NH4HCO3 is an effective pore-expansion agent to remarkably improve the structure and performance of activated alumina synthesized from waste aluminum sludge.