The rapid development of the global economy and population growth are accompanied by the production of numerous waste textiles.This leads to a waste of limited resources and serious environmental pollution problems ca...The rapid development of the global economy and population growth are accompanied by the production of numerous waste textiles.This leads to a waste of limited resources and serious environmental pollution problems caused by improper disposal.The rational recycling of wasted textiles and their transformation into high-value-added emerging products,such as smart wearable devices,is fascinating.Here,we propose a novel roadmap for turning waste cotton fabrics into three-dimensional elastic fiber-based thermoelectric aerogels by a one-step lyophilization process with decoupled self-powered temperature-compression strain dual-parameter sensing properties.The thermoelectric aerogel exhibits a fast compression response time of 0.2 s,a relatively high Seebeck coefficient of 43μV·K^(-1),and an ultralow thermal conductivity of less than 0.04 W·m^(-1)·K^(-1).The cross-linking of trimethoxy(methyl)silane(MTMS)and cellulose endowed the aerogel with excellent elasticity,allowing it to be used as a compressive strain sensor for guessing games and facial expression recognition.In addition,based on the thermoelectric effect,the aerogel can perform temperature detection and differentiation in self-powered mode with the output thermal voltage as the stimulus signal.Furthermore,the wearable system,prepared by connecting the aerogel-prepared array device with a wireless transmission module,allows for temperature alerts in a mobile phone application without signal interference due to the compressive strains generated during gripping.Hence,our strategy is significant for reducing global environmental pollution and provides a revelatory path for transforming waste textiles into high-value-added smart wearable devices.展开更多
Some strains and culture of bacteria which are able to decolorize dyes and degrade polyvinyl alcohol(PVA) were isolated and selected. A pilot scale facultative anaerobic-aerobic biological process was applied for trea...Some strains and culture of bacteria which are able to decolorize dyes and degrade polyvinyl alcohol(PVA) were isolated and selected. A pilot scale facultative anaerobic-aerobic biological process was applied for treatment of textile wastewater containing dyes and PVA. Activated carbon adsorption was used as a tertiary treatment stage, and residual sludge from clarifier returned to the anaerobic reactor again. The pilot test were carried out with two systems. One was inoculated by acclimated sludge, and the another was adding the mixed culture of dye-decoloring and PVA-degrading bacteria for forming biological films, the latter was observed to be more effective than the former. The test has run normally for ten months with a COD loading of 2.13 kg/m3/day, a BOD5 loading of 0.34 kg/m3/day in anaerobic reactor; a COD loading of 1.71 kg/m3/day, a BOD5 loading 0.44 kg/m3/day in aerobic reactor. The pollutants removal efficiency by adding microbes was about 20% higher than that by acclimated sludge. The average removal efficiency of COD stood about 92%, BOD5 97%, PVA 90% and decolorization 80%. The other parameters of effluent quality are also satisfactory.展开更多
This research work viewed issues relating to post-consumers’ solid textile waste management among households from a sociological perspective. The study was carried out in Oyo state of Nigeria. It specifically identif...This research work viewed issues relating to post-consumers’ solid textile waste management among households from a sociological perspective. The study was carried out in Oyo state of Nigeria. It specifically identified sources of post-consumer solid textiles waste, assessed waste management practices in the study area and, examined knowledge of respondent’s on impact of post-consumers solid textile waste on the environment. Eight Local Government Areas were randomly selected from the state and, multistage random sampling procedure was applied in selecting 880 households for the study. Solid wastes generated by each of this household were collected twice a week. Sensitive and micro-census calibrated scale machine and weighing balance was employed in taking weight of the sorted textile wastes. Calibrated cylinder of radius 10 cm and height 40 cm was used in taking volume of the shredded waste. Mean value of post-consumer solid textile waste generated by individual was 0.11 kg ± 0.08, of volume 354 cm3 per day. Major identified waste disposal systems practiced by the respondents were open land surface dumping and open air burning. The respondents (100%) strongly agreed that, wastes are often discards indiscriminately in the street by individuals. Level of awareness on danger created by poor waste disposal system among 78% of the respondents was low. None of the respondents have training on waste management neither is there any accessible training center in the studied area. Part of procedures to solve environmental problems can be by raising levels of awareness of individual household’s, markets and institutional sectors on danger posed by poor handling of textile wastes to life and the environment, and be trained on waste management techniques. A functional and practically ideal waste management scheme should be established by the various organs of government mostly at the Local Government Area levels, and some investors could also be encouraged in instituting such schemes. Research institutes in the country should develop appropriate technologies and trainings on waste management. Apart from salvaging the environment, such schemes will also provide job to cushion poverty mitigation in Nigeria.展开更多
In this paper,?the motion of textiles through a waste water pump is studied by aid of vision technologies. The steel volute of a commercial pump is replaced with a similar volute made in acrylic glass, which allows re...In this paper,?the motion of textiles through a waste water pump is studied by aid of vision technologies. The steel volute of a commercial pump is replaced with a similar volute made in acrylic glass, which allows recording the motion of textiles inside the pump. Recordings are made at four different operating points to investigate the influence of rotational speed of the impeller and flow?rate on the passage of textiles through the pump. The experiments show that the textiles flow rapidly through the pump when the pump is operated near the best efficient point for both high and low impeller speed. The textiles tend to stay inside the pump when the pump is operated at part load for both low and high impeller speed.?At?low impeller speed,?the textiles often stick to the tongue in the pump casing. At higher impeller speed,?the textiles flow multiple rounds in the volute. For fail-safe operation,?it is recommended not to operate waste water pumps far away from the best efficiency point.展开更多
One of the most important aspects of Bangladesh’s textile industry is denim. Bangladesh now has a new opportunity thanks to the global demand for denim among fashion industry professionals. Entrepreneurs from Banglad...One of the most important aspects of Bangladesh’s textile industry is denim. Bangladesh now has a new opportunity thanks to the global demand for denim among fashion industry professionals. Entrepreneurs from Bangladesh provide denim products to well-known international merchants all over the world. The worldwide denim market is predicted to expand by roughly 8% through the year 2020. We must raise the standard of denim if we are to keep up with the expanding industry. In contrast to projectile and rapier systems, air-jet weaving machines nowadays can weave practically all types of yarns without any issues and at higher rates. Due to this, air-jet looms are an excellent substitute for other weft insertion techniques. This kind of device still has one significant flaw, though, and that is the enormous power consumption brought on by the creation of compressed air. Researchers and manufacturers of air-jet looms have therefore worked very hard to find a solution to this issue and achieve a huge reduction in air consumption without compromising loom performance or fabric quality. Therefore, the purpose of this project is to look into ways to decrease air consumption and reduce auxiliary selvedge waste without any decrease in loom performance and fabric quality on existing air-jet weaving looms which reduce the manufacturing costs with process improvement. Just updating the air pressure allowed a weaving mill to reduce air usage by 11 cfm. So, with just almost no cost, a company with 100 looms could save $0.15 M each year, on compressed air. Two new methods for decreasing process costs on air jet looms have also been developed by this project work.展开更多
The rate of textile waste generation worldwide has increased dramatically due to a rise in clothing consumption and production.Here,conversion of cotton-based,colored cotton-based,and blended cotton-polyethylene terep...The rate of textile waste generation worldwide has increased dramatically due to a rise in clothing consumption and production.Here,conversion of cotton-based,colored cotton-based,and blended cotton-polyethylene terephthalate(PET)textile waste materials into value-added chemicals(bioethanol,sorbitol,lactic acid,terephthalic acid(TPA),and ethylene glycol(EG))via enzymatic hydrolysis and fermentation was investigated.In order to enhance the efficiency of enzymatic saccharification,effective pretreatment methods for each type of textile waste were developed,respectively.A high glucose yield of 99.1%was obtained from white cotton-based textile waste after NaOH pretreatment.Furthermore,the digestibility of the cellulose in colored cotton-based textile wastes was increased 1.38e1.75 times because of the removal of dye materials by HPAC-NaOH pretreatment.The blended cottonPET samples showed good hydrolysis efficiency following PET removal via NaOHeethanol pretreatment,with a glucose yield of 92.49%.The sugar content produced via enzymatic hydrolysis was then converted into key platform chemicals(bioethanol,sorbitol,and lactic acid)via fermentation or hydrogenation.The maximum ethanol yield was achieved with the white T-shirt sample(537 mL/kg substrate),which was 3.2,2.1,and 2.6 times higher than those obtained with rice straw,pine wood,and oak wood,respectively.Glucose was selectively converted into sorbitol and LA at a yield of 70%and 83.67%,respectively.TPA and EG were produced from blended cottonPET via NaOHeethanol pretreatment.The integrated biorefinery process proposed here demonstrates significant potential for valorization of textile waste.展开更多
Clothing and textiles are very challenging to recycle due to the fact that they are nearly always a blend of fibres from different types of polymers.There are some promising early indications that new green solvents i...Clothing and textiles are very challenging to recycle due to the fact that they are nearly always a blend of fibres from different types of polymers.There are some promising early indications that new green solvents including CyreneTM and TMO as well as some simple ionic liquids can be used to aid recycling of complex fabrics by selective dissolution of one of the component polymers.A viable process for the future valorisation of many waste fabrics should be designed to maximise the creation of valuable product streams while also minimising any waste.展开更多
Guimarães is a middle sized city and municipality located in northern Portugal.The municipality has committed to reducing the annual amount of undifferentiated municipal solid waste(MSW)from 371 kg/capita in 2021...Guimarães is a middle sized city and municipality located in northern Portugal.The municipality has committed to reducing the annual amount of undifferentiated municipal solid waste(MSW)from 371 kg/capita in 2021 to 120 kg/capita by 2030 under the Zero Waste Cities Certification process.In the municipality of Guimarães,one of the constant fractions of MSW composition is textile waste(TW),which the revised EU Waste Framework Directive requires separate collection by 1 January 2025.Therefore,two indicators of TW generation were analysed to identify waste collection routes with a high level of textile waste generation for the priority implementation of separate collection:TW composition in the undifferentiated MSW stream and TW generation per capita.Basic statistical analysis methods were used to process the source data of TW composition in the undifferentiated MSW stream.Cluster analysis was applied to the data set on TW generation per capita,considering the area typology(urban,rural or mixed)of collection routes.It was considered that 39%of the industrial sector of Guimarães consists of textile and clothing production and represents small-and medium-sized enterprises,which can affect TW generation in the undifferentiated MSW stream.Causal-comparative research was used to define the correlation between TW generation per capita and the economic activity of the textile and clothing industry in the municipality.As a result,applying a multi-disciplinary approach,a project of the Textile Waste Generation Map was presented.展开更多
基金supported by the grants(51973027 and 52003044)from the National Natural Science Foundation of Chinathe Fundamental Research Funds for the Central Universities(2232023A-05)+4 种基金the International Cooperation Fund of Science and Technology Commission of Shanghai Municipality(21130750100)Major Scientific and Technological Innovation Projects of Shandong Province(2021CXGC011004)This work has also been supported by the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials(KF2216)the Donghua University Distinguished Young Professor Program to Prof.Liming Wangthe Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University(CUSF-DH-D-2022040)to Xinyang He.
文摘The rapid development of the global economy and population growth are accompanied by the production of numerous waste textiles.This leads to a waste of limited resources and serious environmental pollution problems caused by improper disposal.The rational recycling of wasted textiles and their transformation into high-value-added emerging products,such as smart wearable devices,is fascinating.Here,we propose a novel roadmap for turning waste cotton fabrics into three-dimensional elastic fiber-based thermoelectric aerogels by a one-step lyophilization process with decoupled self-powered temperature-compression strain dual-parameter sensing properties.The thermoelectric aerogel exhibits a fast compression response time of 0.2 s,a relatively high Seebeck coefficient of 43μV·K^(-1),and an ultralow thermal conductivity of less than 0.04 W·m^(-1)·K^(-1).The cross-linking of trimethoxy(methyl)silane(MTMS)and cellulose endowed the aerogel with excellent elasticity,allowing it to be used as a compressive strain sensor for guessing games and facial expression recognition.In addition,based on the thermoelectric effect,the aerogel can perform temperature detection and differentiation in self-powered mode with the output thermal voltage as the stimulus signal.Furthermore,the wearable system,prepared by connecting the aerogel-prepared array device with a wireless transmission module,allows for temperature alerts in a mobile phone application without signal interference due to the compressive strains generated during gripping.Hence,our strategy is significant for reducing global environmental pollution and provides a revelatory path for transforming waste textiles into high-value-added smart wearable devices.
文摘Some strains and culture of bacteria which are able to decolorize dyes and degrade polyvinyl alcohol(PVA) were isolated and selected. A pilot scale facultative anaerobic-aerobic biological process was applied for treatment of textile wastewater containing dyes and PVA. Activated carbon adsorption was used as a tertiary treatment stage, and residual sludge from clarifier returned to the anaerobic reactor again. The pilot test were carried out with two systems. One was inoculated by acclimated sludge, and the another was adding the mixed culture of dye-decoloring and PVA-degrading bacteria for forming biological films, the latter was observed to be more effective than the former. The test has run normally for ten months with a COD loading of 2.13 kg/m3/day, a BOD5 loading of 0.34 kg/m3/day in anaerobic reactor; a COD loading of 1.71 kg/m3/day, a BOD5 loading 0.44 kg/m3/day in aerobic reactor. The pollutants removal efficiency by adding microbes was about 20% higher than that by acclimated sludge. The average removal efficiency of COD stood about 92%, BOD5 97%, PVA 90% and decolorization 80%. The other parameters of effluent quality are also satisfactory.
文摘This research work viewed issues relating to post-consumers’ solid textile waste management among households from a sociological perspective. The study was carried out in Oyo state of Nigeria. It specifically identified sources of post-consumer solid textiles waste, assessed waste management practices in the study area and, examined knowledge of respondent’s on impact of post-consumers solid textile waste on the environment. Eight Local Government Areas were randomly selected from the state and, multistage random sampling procedure was applied in selecting 880 households for the study. Solid wastes generated by each of this household were collected twice a week. Sensitive and micro-census calibrated scale machine and weighing balance was employed in taking weight of the sorted textile wastes. Calibrated cylinder of radius 10 cm and height 40 cm was used in taking volume of the shredded waste. Mean value of post-consumer solid textile waste generated by individual was 0.11 kg ± 0.08, of volume 354 cm3 per day. Major identified waste disposal systems practiced by the respondents were open land surface dumping and open air burning. The respondents (100%) strongly agreed that, wastes are often discards indiscriminately in the street by individuals. Level of awareness on danger created by poor waste disposal system among 78% of the respondents was low. None of the respondents have training on waste management neither is there any accessible training center in the studied area. Part of procedures to solve environmental problems can be by raising levels of awareness of individual household’s, markets and institutional sectors on danger posed by poor handling of textile wastes to life and the environment, and be trained on waste management techniques. A functional and practically ideal waste management scheme should be established by the various organs of government mostly at the Local Government Area levels, and some investors could also be encouraged in instituting such schemes. Research institutes in the country should develop appropriate technologies and trainings on waste management. Apart from salvaging the environment, such schemes will also provide job to cushion poverty mitigation in Nigeria.
文摘In this paper,?the motion of textiles through a waste water pump is studied by aid of vision technologies. The steel volute of a commercial pump is replaced with a similar volute made in acrylic glass, which allows recording the motion of textiles inside the pump. Recordings are made at four different operating points to investigate the influence of rotational speed of the impeller and flow?rate on the passage of textiles through the pump. The experiments show that the textiles flow rapidly through the pump when the pump is operated near the best efficient point for both high and low impeller speed. The textiles tend to stay inside the pump when the pump is operated at part load for both low and high impeller speed.?At?low impeller speed,?the textiles often stick to the tongue in the pump casing. At higher impeller speed,?the textiles flow multiple rounds in the volute. For fail-safe operation,?it is recommended not to operate waste water pumps far away from the best efficiency point.
文摘One of the most important aspects of Bangladesh’s textile industry is denim. Bangladesh now has a new opportunity thanks to the global demand for denim among fashion industry professionals. Entrepreneurs from Bangladesh provide denim products to well-known international merchants all over the world. The worldwide denim market is predicted to expand by roughly 8% through the year 2020. We must raise the standard of denim if we are to keep up with the expanding industry. In contrast to projectile and rapier systems, air-jet weaving machines nowadays can weave practically all types of yarns without any issues and at higher rates. Due to this, air-jet looms are an excellent substitute for other weft insertion techniques. This kind of device still has one significant flaw, though, and that is the enormous power consumption brought on by the creation of compressed air. Researchers and manufacturers of air-jet looms have therefore worked very hard to find a solution to this issue and achieve a huge reduction in air consumption without compromising loom performance or fabric quality. Therefore, the purpose of this project is to look into ways to decrease air consumption and reduce auxiliary selvedge waste without any decrease in loom performance and fabric quality on existing air-jet weaving looms which reduce the manufacturing costs with process improvement. Just updating the air pressure allowed a weaving mill to reduce air usage by 11 cfm. So, with just almost no cost, a company with 100 looms could save $0.15 M each year, on compressed air. Two new methods for decreasing process costs on air jet looms have also been developed by this project work.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education NRF-2022R1A2C10028591140982119420101 and 2020R1I1A 1A01061751)supported by the IBCT project(2021-0083)funded by the Tan Tao Group(TTG),Vietnam.
文摘The rate of textile waste generation worldwide has increased dramatically due to a rise in clothing consumption and production.Here,conversion of cotton-based,colored cotton-based,and blended cotton-polyethylene terephthalate(PET)textile waste materials into value-added chemicals(bioethanol,sorbitol,lactic acid,terephthalic acid(TPA),and ethylene glycol(EG))via enzymatic hydrolysis and fermentation was investigated.In order to enhance the efficiency of enzymatic saccharification,effective pretreatment methods for each type of textile waste were developed,respectively.A high glucose yield of 99.1%was obtained from white cotton-based textile waste after NaOH pretreatment.Furthermore,the digestibility of the cellulose in colored cotton-based textile wastes was increased 1.38e1.75 times because of the removal of dye materials by HPAC-NaOH pretreatment.The blended cottonPET samples showed good hydrolysis efficiency following PET removal via NaOHeethanol pretreatment,with a glucose yield of 92.49%.The sugar content produced via enzymatic hydrolysis was then converted into key platform chemicals(bioethanol,sorbitol,and lactic acid)via fermentation or hydrogenation.The maximum ethanol yield was achieved with the white T-shirt sample(537 mL/kg substrate),which was 3.2,2.1,and 2.6 times higher than those obtained with rice straw,pine wood,and oak wood,respectively.Glucose was selectively converted into sorbitol and LA at a yield of 70%and 83.67%,respectively.TPA and EG were produced from blended cottonPET via NaOHeethanol pretreatment.The integrated biorefinery process proposed here demonstrates significant potential for valorization of textile waste.
文摘Clothing and textiles are very challenging to recycle due to the fact that they are nearly always a blend of fibres from different types of polymers.There are some promising early indications that new green solvents including CyreneTM and TMO as well as some simple ionic liquids can be used to aid recycling of complex fabrics by selective dissolution of one of the component polymers.A viable process for the future valorisation of many waste fabrics should be designed to maximise the creation of valuable product streams while also minimising any waste.
文摘Guimarães is a middle sized city and municipality located in northern Portugal.The municipality has committed to reducing the annual amount of undifferentiated municipal solid waste(MSW)from 371 kg/capita in 2021 to 120 kg/capita by 2030 under the Zero Waste Cities Certification process.In the municipality of Guimarães,one of the constant fractions of MSW composition is textile waste(TW),which the revised EU Waste Framework Directive requires separate collection by 1 January 2025.Therefore,two indicators of TW generation were analysed to identify waste collection routes with a high level of textile waste generation for the priority implementation of separate collection:TW composition in the undifferentiated MSW stream and TW generation per capita.Basic statistical analysis methods were used to process the source data of TW composition in the undifferentiated MSW stream.Cluster analysis was applied to the data set on TW generation per capita,considering the area typology(urban,rural or mixed)of collection routes.It was considered that 39%of the industrial sector of Guimarães consists of textile and clothing production and represents small-and medium-sized enterprises,which can affect TW generation in the undifferentiated MSW stream.Causal-comparative research was used to define the correlation between TW generation per capita and the economic activity of the textile and clothing industry in the municipality.As a result,applying a multi-disciplinary approach,a project of the Textile Waste Generation Map was presented.