The main technologies for reducing flue gas heat loss of pulverized coal-fired boilers are introduced, and the suitability of these technologies for boiler operation and the principles for selection of these technolog...The main technologies for reducing flue gas heat loss of pulverized coal-fired boilers are introduced, and the suitability of these technologies for boiler operation and the principles for selection of these technologies are explored. The main conclusions are: 1) the non-equilibrium control over flue gas flow rates at the inlet of the air heater and the reversal rotation of the air heater rotator should be popularized as regular technologies in large boilers; 2) increasing the area of the air heater to reduce the flue gas heat loss in pulverized coal-fired boilers should be the top option and increasing the area of the economizer be the next choice; 3) low- pressure economizer technology could save energy under special conditions and should be compared with the technology of increasing economizer area in terms of technical economics when the latter is feasible; 4) the hot primary air heater is only suitable to the pnlvefizing system with a large amount of cold air mixed.展开更多
Thermal loss of exhaust flue gas accounts for the largest proportion of the total boiler thermal loss. Nowadays in China, the exhaust gas temperature in many thermal power plants is much higher than the designed value...Thermal loss of exhaust flue gas accounts for the largest proportion of the total boiler thermal loss. Nowadays in China, the exhaust gas temperature in many thermal power plants is much higher than the designed value, thus, the recycle and reuse of the waste heat of tail flue gas is necessary. However, lower exhaust gas temperature will aggravate low temperature corrosion of the tail heating surface, which also causes huge economic losses. In order to solve this problem, this paper designs a monitoring experiment platform of flue gas low temperature corrosion, which can measure the corrosion condition of different materials by different flue gas compositions and temperature corrosion speeds. Besides, effects of low temperature corrosion factors are analyzed to find the best exhaust gas temperature and the surface material of tail heating surface.展开更多
A medium-temperature waste-heat recovery system based on the organic Rankine cycle (ORC) is designed to recover the exhaust energy from a heavy-duty diesel engine. Analysis of the 1st law of thermodynamics for an ORC ...A medium-temperature waste-heat recovery system based on the organic Rankine cycle (ORC) is designed to recover the exhaust energy from a heavy-duty diesel engine. Analysis of the 1st law of thermodynamics for an ORC system is performed. This analysis contains two parts. The first part is an analysis with undefined heat exchangers to gain an understanding of the ORC and find out suitable organic fluid parameters for a better ORC efficiency. The second part of the analysis uses combined engine test results and two designs of heat exchangers. By comparing the two designs, an improved system of heat exchangers is described. This analysis also quantifies the effect of engine parameters on ORC system. The study concludes that the supercritical Rankine cycle is a better approach towards waste heat recovery. The ORC system is found to perform better under part-load conditions if the medium-high power condition rather than rated working point of the engine is used as the design parameter. The ORC system achieves the highest waste-heat recovery efficiency of up to 10-15% for the optimised heat ex-changer design.展开更多
文摘The main technologies for reducing flue gas heat loss of pulverized coal-fired boilers are introduced, and the suitability of these technologies for boiler operation and the principles for selection of these technologies are explored. The main conclusions are: 1) the non-equilibrium control over flue gas flow rates at the inlet of the air heater and the reversal rotation of the air heater rotator should be popularized as regular technologies in large boilers; 2) increasing the area of the air heater to reduce the flue gas heat loss in pulverized coal-fired boilers should be the top option and increasing the area of the economizer be the next choice; 3) low- pressure economizer technology could save energy under special conditions and should be compared with the technology of increasing economizer area in terms of technical economics when the latter is feasible; 4) the hot primary air heater is only suitable to the pnlvefizing system with a large amount of cold air mixed.
文摘Thermal loss of exhaust flue gas accounts for the largest proportion of the total boiler thermal loss. Nowadays in China, the exhaust gas temperature in many thermal power plants is much higher than the designed value, thus, the recycle and reuse of the waste heat of tail flue gas is necessary. However, lower exhaust gas temperature will aggravate low temperature corrosion of the tail heating surface, which also causes huge economic losses. In order to solve this problem, this paper designs a monitoring experiment platform of flue gas low temperature corrosion, which can measure the corrosion condition of different materials by different flue gas compositions and temperature corrosion speeds. Besides, effects of low temperature corrosion factors are analyzed to find the best exhaust gas temperature and the surface material of tail heating surface.
基金supported by the National Natural Science Foundation of China (Grant No. 51076013)the Specialized Research Fund for the Doc-toral Program of Higher Education of China (Grant No. 20101101110008)
文摘A medium-temperature waste-heat recovery system based on the organic Rankine cycle (ORC) is designed to recover the exhaust energy from a heavy-duty diesel engine. Analysis of the 1st law of thermodynamics for an ORC system is performed. This analysis contains two parts. The first part is an analysis with undefined heat exchangers to gain an understanding of the ORC and find out suitable organic fluid parameters for a better ORC efficiency. The second part of the analysis uses combined engine test results and two designs of heat exchangers. By comparing the two designs, an improved system of heat exchangers is described. This analysis also quantifies the effect of engine parameters on ORC system. The study concludes that the supercritical Rankine cycle is a better approach towards waste heat recovery. The ORC system is found to perform better under part-load conditions if the medium-high power condition rather than rated working point of the engine is used as the design parameter. The ORC system achieves the highest waste-heat recovery efficiency of up to 10-15% for the optimised heat ex-changer design.