In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is ...In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.展开更多
Concentrating Solar Power(CSP)plants offer a promising way to generate low-emission energy.However,these plants face challenges such as reduced sunlight during winter and cloudy days,despite being located in high sola...Concentrating Solar Power(CSP)plants offer a promising way to generate low-emission energy.However,these plants face challenges such as reduced sunlight during winter and cloudy days,despite being located in high solar radiation areas.Furthermore,their dispatch capacities and yields can be affected by high electricity consumption,particularly at night.The present work aims to develop an off-design model that evaluates the hourly and annual performances of a parabolic trough power plant(PTPP)equipped with a waste heat recovery system.The study aims to compare the performances of this new layout with those of the conventional Andasol 1 plant,with the aim of assessing the improvements achieved in the new design.Based on the results,it can be concluded that the new layout has increased the annual generated power to almost 183 GWh(an increase of about 7.60% is achieved compared to the Andasol 1 layout that generates 169 GWh annually).Additionally,the proposed installation has achieved an efficiency of 20.55%,which represents a 7.87% increase compared to the previous design(19.05%).The Levelized Cost of Electricity(LCOE)of the new layout has been reduced by more than 5.8% compared to the Andasol 1 plant.Specifically,it has decreased from 13.11 to 12.35 c/kWh.This reduction in LCOE highlights the improved cost-effectiveness of the newlayout,making it amore economically viable option for generating electricity compared to the conventional Andasol 1 plant.展开更多
Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power gen...Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.展开更多
Liquefied natural gas(LNG)is regarded as one of the cleanest fossil fuel and has experienced significant developments in recent years.The liquefaction process of natural gas is energy-intensive,while the regasificatio...Liquefied natural gas(LNG)is regarded as one of the cleanest fossil fuel and has experienced significant developments in recent years.The liquefaction process of natural gas is energy-intensive,while the regasification of LNG gives out a huge amount of waste energy since plenty of high grade cold energy(-160℃)from LNG is released to sea water directly in most cases,and also sometimes LNG is burned for regasification.On the other hand,liquid air energy storage(LAES)is an emerging energy storage technology for applications such as peak load shifting of power grids,which generates 30%-40%of compression heat(-200℃).Such heat could lead to energy waste if not recovered and used.The recovery of the compression heat is technically feasible but requires additional capital investment,which may not always be economically attractive.Therefore,we propose a power plant for recovering the waste cryogenic energy from LNG regasification and compression heat from the LAES.The challenge for such a power plant is the wide working temperature range between the low-temperature exergy source(-160℃)and heat source(-200℃).Nitrogen and argon are proposed as the working fluids to address the challenge.Thermodynamic analyses are carried out and the results show that the power plant could achieve a thermal efficiency of 27%and 19%and an exergy efficiency of 40%and 28%for nitrogen and argon,respectively.Here,with the nitrogen as working fluid undergoes a complete Brayton Cycle,while the argon based power plant goes through a combined Brayton and Rankine Cycle.Besides,the economic analysis shows that the payback period of this proposed system is only 2.2 years,utilizing the excess heat from a 5 MW/40 MWh LAES system.The findings suggest that the waste energy based power plant could be co-located with the LNG terminal and LAES plant,providing additional power output and reducing energy waste.展开更多
Aiming to meet the demand of the country' s nuclear demonstration project on the CAP1400 nuclear power plant, Baosteel uses the roll-bonding technology and develops the SA-533 Type B CL. 1 + SA-240 Type 304L high-st...Aiming to meet the demand of the country' s nuclear demonstration project on the CAP1400 nuclear power plant, Baosteel uses the roll-bonding technology and develops the SA-533 Type B CL. 1 + SA-240 Type 304L high-strength and high-toughness clad steel plate with a shear strength of over 310 MPa for the nuclear power plant' s safety injection tank. The properties of the quenched and tempered and the simulated post-weld heat treatment states are systematically studied herein through a comprehensive inspection and evaluation of the composition,microstructure,and properties of the clad steel plate. The results show that the bonding interface has high shear strength and that the base metal has high strength and good toughness at low temperatures. Hence, the performance fully meets the technical requirements of the CAP1400 nuclear power plant' s safety injection tank in the country' s nuclear demonstration project. The roll-bonded clad steel plate can be used to manufacture the safety injection tank of the CAP1400 nuclear power plant.展开更多
This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion p...This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion process in heat & power plants, cogeneration units, etc., which burn the gaseous fuel, primarily natural gas, or methane, biogas, geothermal gas, or other gaseous mixtures containing hydrogen. The solution proposes a more effective and non-traditional use of gaseous fuel for heating, the flue gases of which are processed in order to extract additional utilisable heat, with potential elimination of CO2 from them. Deploying of the heating plant in an island regime (OFF-GRID) enables definition of the benefits brought by the 3 years of operational experience and presents visions for the future offering the possibility to utilise the support energy services at the municipal as well as regional level.展开更多
Steam is the typical working fluid to drive turbo-generators in coal-fired power plants. It is an effective working fluid, but some of its energy is extracted in an unusable form when condensed. A Power Recovery ...Steam is the typical working fluid to drive turbo-generators in coal-fired power plants. It is an effective working fluid, but some of its energy is extracted in an unusable form when condensed. A Power Recovery Cycle (PRC) using a more volatile Secondary Working Fluid (SWF) added to the steam cycle could improve energy efficiency. PRCs have been applied to the flue gas and for combined cycle systems but not to traditional plant steam cycles. This paper details an analysis of adding a steam cycle PRC to a 500 MW lignite coal-fired power plant. A validated model of the plant was developed and PRCs using the three most attractive SWFs, benzene, methanol and hydrazine, were then added to the model. Adding a benzene, methanol, or hydrazine steam cycle PRC will produce an additional 59, 34, and 49 MW, respectively. An AACE Class 4 factored broad capital cost estimate and comparable operating costs and revenue estimates were developed to evaluate PRC feasibility. The benzene, methanol, and hydrazine processes had 2019 Net Present Values (NPVs) @12% of -$32, -$59, and +$35 million ± 40%, respectively. Thus, a PRC may be profitable at current or modest increases to U.S. Upper Midwest electricity prices of around $0.0667/kWh.展开更多
The demand for more efficient power generation is not only a prominent subject for environmental reasons but for economic reasons as well. Continuing growth in population contributes to more and more consumption of fr...The demand for more efficient power generation is not only a prominent subject for environmental reasons but for economic reasons as well. Continuing growth in population contributes to more and more consumption of fresh water, demanding less expensive desalination production, especially in the regions with little or no natural fresh water. Multigeneration desalination power plants may provide solutions to these issues through advanced and efficient designs that are capable of supplying fresh water and power to remote or arid regions of the world. This paper examines the flexibility and versatility of multigeneration systems to showcase the myriad of combinations that are available to accommodate any specific application. It also proposes a specific design for a multi-stage flash desalination system that is powered directly by the exhaust gases of a natural gas micro-turbine capable of producing around 1 MW of electrical power. The performance characteristics, the fresh water produced per kW and the overall plant efficiency, are numerically investigated and compared with previous designs that were analyzed on a larger scale. It is determined that the multigeneration system can produce 56,891 gallons of fresh water per day and an estimated 4.07 tons of salt per day and that a small scale multi-generation desalting systems is feasible.展开更多
The basic methods of concentration and purification of liquid radioactive waste on the nuclear power plant are distillation and ionic exchange. During vaporization of oil waste products and the fulfilled washing solut...The basic methods of concentration and purification of liquid radioactive waste on the nuclear power plant are distillation and ionic exchange. During vaporization of oil waste products and the fulfilled washing solutions the part of oil passes into a condensate. Clearing of such condensate on ion-exchanged filters results to oiling of ion-exchanged materials and to decrease number of filter cycles. Due to the often regeneration of ion-exchanged filters additional volumes of waste products as the fulfilled reclaiming solutions, washing and loosening waters are formed. The attention of scientists was involved with methods of clearing of water environments from the organic substances, based on deep oxidizing transformations of hydrocarbons into carbonic gas and water. From processes of oxidation of hydrocarbons up to CO2 and H2O, sold at moderate conditions, our attention has involved photochemical oxidation with the help of UV-radiation.展开更多
This paper studies the application of renewable energy sources in wastewater treatment plants to achieve self-sustain- ability of power. The data of wastewater treatment plant in the rural city of Toukh-EGYPT are pres...This paper studies the application of renewable energy sources in wastewater treatment plants to achieve self-sustain- ability of power. The data of wastewater treatment plant in the rural city of Toukh-EGYPT are presented as a case-study. The primary objective is to provide an entirely renewable standalone power system, which satisfies lowest possible emissions with the minimum lifecycle cost. Mass balance principle is applied on the biodegradable components in the wastewater to evaluate the volume of digester gas that is produced from sludge through anaerobic digestion process. Using digester gas as a fuel lead to study combined-heat-and-power technologies, where fuel cell is selected in order to abide by the low emissions constraint. The study assessed the electrical power obtained from fuel cell and the utilization of the exhausted heat energy for additional electrical power production using a micro-turbine. After covering the major part of load demand, the use of other renewable energy sources was studied. The strength of both solar and wind energy was determined by the case-study location. Hybrid optimization model for electric renewable (HOMER) software was used to simulate the hybrid system composed of combined-heat-and-power units, wind turbines and photovoltaic systems. Simulation results gave the best system configuration and optimum size of each component beside the detailed electrical and cost analysis of the model.展开更多
In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large commun...In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large community,andMSW was classified and utilized.The systemoperated by determining power by heating load,and measures were taken to reduce operating costs by purchasing and selling LNG,natural gas(NG),cooling,heating,and power.Based on this system model,three operation strategies were proposed based on whether MSW was classified and the length of kitchen waste fermentation time,and each strategy was simulated hourly throughout the year.The results showed that the strategy of MSW classified and centralized fermentation of kitchen waste in summer(i.e.,strategy 3)required the least total amount of LNG for the whole year,which was 47701.77 t.In terms of total annual cost expenditure,strategy 3 had the best overall economy,with the lowest total annual expenditure of 2.7730×108 RMB at LNG and NG unit prices of 4 and 4.2 RMB/kg,respectively.The lower heating value of biogas produced by fermentation of kitchen waste from MSW being classified was higher than that of MSW before being classified,so the average annual thermal economy of the operating strategy of MSW being classified was better than that of MSW not being classified.Among the strategies in which MSW was classified and utilized,strategy 3 could better meet the load demand of users in the corresponding season,and thus this strategy had better thermal economy than the strategy of year-round fermentation of kitchen waste(i.e.,strategy 2).The hourly analysis data showed that the net electrical efficiency of the system varies in the same trend as the cooling,heating and power loads in all seasons,while the relationship between the energy utilization efficiency and load varied from season to season.This study can provide guidance for the practical application of MSW being classified in the system.展开更多
A new waste heat recovery system is presented to recover exhausted steam waste heat from the steam turbine by absorption heat pump(AHP) in a gas-steam combined cycle(GSCC) power plant. The system can decrease energy c...A new waste heat recovery system is presented to recover exhausted steam waste heat from the steam turbine by absorption heat pump(AHP) in a gas-steam combined cycle(GSCC) power plant. The system can decrease energy consumption and further improve the energy utilization. The performance evaluation criteria are calculated, and exergy analysis for key components are implemented in terms of the energy and exergy analysis theory. Besides, the change of these criteria is also revealed before and after modification. The net power output approximately increases by 21738 kW, and equivalent coal consumption decreases by 5.58 g/kWh. A 1.81% and 1.92% increase in the thermal and exergy efficiency is respectively obtained in the new integrated system as the heating load is 401095 kJ at 100% condition. Meanwhile, the appropriate extraction parameters for heating have been also analyzed in the two systems. The proposed scheme can not only save energy consumption but also reduce emission and gain great economic benefit, which is proven to be a huge potential for practical application.展开更多
The Rankine cycle system for waste heat recovery of heavy-duty vehicle diesel engines has been regarded as a promising tech- nique to reduce fuel consumption. Its heat dissipation in the condensation process, however,...The Rankine cycle system for waste heat recovery of heavy-duty vehicle diesel engines has been regarded as a promising tech- nique to reduce fuel consumption. Its heat dissipation in the condensation process, however, should be take:l away in time, which is an energy-consuming process. A fan-assisted auxiliary water-cooling system is employed in this paper. Results at 1300 r/min and 50% load indicate that the cooling pump and cooling fan together consume 7.66% of the recovered power. What's worse for the heavy load, cooling accessories may deplete of all the recovered power of the Rankine cycle system. Af- terwards, effects of the condensing pressure and water feeding temperature are investigated, based on which a cooling power consumption model is established. Finally, an overall efficiency optimization is conducted to balance the electric power gener- ation and cooling power consumption, taking condensing pressure, pressure ratio and exhaust bypass valve as major variables. The research suggests that the priority is to increase condensing pressure and open exhaust bypass valve appropriately at high speed and heavy load to reduce the cooling power consumption, while at low speed and light load, a lower condensing pressure is favored and the exhaust bypass valve should be closed making the waste heat recovered as much as possible. Within the sub-critical region, a larger pressure ratio yields higher overall efficiency improvement at medium-low speed and load. But the effects taper off at high speed and heavy load. For a given vehicular heavy-duty diesel engine, the overall e:'ficiency can be improved by 3.37% at 1300 r/min and 25% load using a Rankine cycle system to recover exhaust energy. The improvement becomes smaller as engine speed and load become higher.展开更多
文摘In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.
文摘Concentrating Solar Power(CSP)plants offer a promising way to generate low-emission energy.However,these plants face challenges such as reduced sunlight during winter and cloudy days,despite being located in high solar radiation areas.Furthermore,their dispatch capacities and yields can be affected by high electricity consumption,particularly at night.The present work aims to develop an off-design model that evaluates the hourly and annual performances of a parabolic trough power plant(PTPP)equipped with a waste heat recovery system.The study aims to compare the performances of this new layout with those of the conventional Andasol 1 plant,with the aim of assessing the improvements achieved in the new design.Based on the results,it can be concluded that the new layout has increased the annual generated power to almost 183 GWh(an increase of about 7.60% is achieved compared to the Andasol 1 layout that generates 169 GWh annually).Additionally,the proposed installation has achieved an efficiency of 20.55%,which represents a 7.87% increase compared to the previous design(19.05%).The Levelized Cost of Electricity(LCOE)of the new layout has been reduced by more than 5.8% compared to the Andasol 1 plant.Specifically,it has decreased from 13.11 to 12.35 c/kWh.This reduction in LCOE highlights the improved cost-effectiveness of the newlayout,making it amore economically viable option for generating electricity compared to the conventional Andasol 1 plant.
基金the Science and Technology Foundation of Shaanxi Province (No.2002K08-G9).
文摘Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.
基金partial support of UK EPSRC under grants EP/V012053/1,EP/S032622/1,EP/P004709/1,EP/P003605/1 and EP/N032888/1the British Council under 2020-RLWK12-10478 and 2019-RLWK11-10724。
文摘Liquefied natural gas(LNG)is regarded as one of the cleanest fossil fuel and has experienced significant developments in recent years.The liquefaction process of natural gas is energy-intensive,while the regasification of LNG gives out a huge amount of waste energy since plenty of high grade cold energy(-160℃)from LNG is released to sea water directly in most cases,and also sometimes LNG is burned for regasification.On the other hand,liquid air energy storage(LAES)is an emerging energy storage technology for applications such as peak load shifting of power grids,which generates 30%-40%of compression heat(-200℃).Such heat could lead to energy waste if not recovered and used.The recovery of the compression heat is technically feasible but requires additional capital investment,which may not always be economically attractive.Therefore,we propose a power plant for recovering the waste cryogenic energy from LNG regasification and compression heat from the LAES.The challenge for such a power plant is the wide working temperature range between the low-temperature exergy source(-160℃)and heat source(-200℃).Nitrogen and argon are proposed as the working fluids to address the challenge.Thermodynamic analyses are carried out and the results show that the power plant could achieve a thermal efficiency of 27%and 19%and an exergy efficiency of 40%and 28%for nitrogen and argon,respectively.Here,with the nitrogen as working fluid undergoes a complete Brayton Cycle,while the argon based power plant goes through a combined Brayton and Rankine Cycle.Besides,the economic analysis shows that the payback period of this proposed system is only 2.2 years,utilizing the excess heat from a 5 MW/40 MWh LAES system.The findings suggest that the waste energy based power plant could be co-located with the LNG terminal and LAES plant,providing additional power output and reducing energy waste.
文摘Aiming to meet the demand of the country' s nuclear demonstration project on the CAP1400 nuclear power plant, Baosteel uses the roll-bonding technology and develops the SA-533 Type B CL. 1 + SA-240 Type 304L high-strength and high-toughness clad steel plate with a shear strength of over 310 MPa for the nuclear power plant' s safety injection tank. The properties of the quenched and tempered and the simulated post-weld heat treatment states are systematically studied herein through a comprehensive inspection and evaluation of the composition,microstructure,and properties of the clad steel plate. The results show that the bonding interface has high shear strength and that the base metal has high strength and good toughness at low temperatures. Hence, the performance fully meets the technical requirements of the CAP1400 nuclear power plant' s safety injection tank in the country' s nuclear demonstration project. The roll-bonded clad steel plate can be used to manufacture the safety injection tank of the CAP1400 nuclear power plant.
文摘This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion process in heat & power plants, cogeneration units, etc., which burn the gaseous fuel, primarily natural gas, or methane, biogas, geothermal gas, or other gaseous mixtures containing hydrogen. The solution proposes a more effective and non-traditional use of gaseous fuel for heating, the flue gases of which are processed in order to extract additional utilisable heat, with potential elimination of CO2 from them. Deploying of the heating plant in an island regime (OFF-GRID) enables definition of the benefits brought by the 3 years of operational experience and presents visions for the future offering the possibility to utilise the support energy services at the municipal as well as regional level.
文摘Steam is the typical working fluid to drive turbo-generators in coal-fired power plants. It is an effective working fluid, but some of its energy is extracted in an unusable form when condensed. A Power Recovery Cycle (PRC) using a more volatile Secondary Working Fluid (SWF) added to the steam cycle could improve energy efficiency. PRCs have been applied to the flue gas and for combined cycle systems but not to traditional plant steam cycles. This paper details an analysis of adding a steam cycle PRC to a 500 MW lignite coal-fired power plant. A validated model of the plant was developed and PRCs using the three most attractive SWFs, benzene, methanol and hydrazine, were then added to the model. Adding a benzene, methanol, or hydrazine steam cycle PRC will produce an additional 59, 34, and 49 MW, respectively. An AACE Class 4 factored broad capital cost estimate and comparable operating costs and revenue estimates were developed to evaluate PRC feasibility. The benzene, methanol, and hydrazine processes had 2019 Net Present Values (NPVs) @12% of -$32, -$59, and +$35 million ± 40%, respectively. Thus, a PRC may be profitable at current or modest increases to U.S. Upper Midwest electricity prices of around $0.0667/kWh.
文摘The demand for more efficient power generation is not only a prominent subject for environmental reasons but for economic reasons as well. Continuing growth in population contributes to more and more consumption of fresh water, demanding less expensive desalination production, especially in the regions with little or no natural fresh water. Multigeneration desalination power plants may provide solutions to these issues through advanced and efficient designs that are capable of supplying fresh water and power to remote or arid regions of the world. This paper examines the flexibility and versatility of multigeneration systems to showcase the myriad of combinations that are available to accommodate any specific application. It also proposes a specific design for a multi-stage flash desalination system that is powered directly by the exhaust gases of a natural gas micro-turbine capable of producing around 1 MW of electrical power. The performance characteristics, the fresh water produced per kW and the overall plant efficiency, are numerically investigated and compared with previous designs that were analyzed on a larger scale. It is determined that the multigeneration system can produce 56,891 gallons of fresh water per day and an estimated 4.07 tons of salt per day and that a small scale multi-generation desalting systems is feasible.
文摘The basic methods of concentration and purification of liquid radioactive waste on the nuclear power plant are distillation and ionic exchange. During vaporization of oil waste products and the fulfilled washing solutions the part of oil passes into a condensate. Clearing of such condensate on ion-exchanged filters results to oiling of ion-exchanged materials and to decrease number of filter cycles. Due to the often regeneration of ion-exchanged filters additional volumes of waste products as the fulfilled reclaiming solutions, washing and loosening waters are formed. The attention of scientists was involved with methods of clearing of water environments from the organic substances, based on deep oxidizing transformations of hydrocarbons into carbonic gas and water. From processes of oxidation of hydrocarbons up to CO2 and H2O, sold at moderate conditions, our attention has involved photochemical oxidation with the help of UV-radiation.
文摘This paper studies the application of renewable energy sources in wastewater treatment plants to achieve self-sustain- ability of power. The data of wastewater treatment plant in the rural city of Toukh-EGYPT are presented as a case-study. The primary objective is to provide an entirely renewable standalone power system, which satisfies lowest possible emissions with the minimum lifecycle cost. Mass balance principle is applied on the biodegradable components in the wastewater to evaluate the volume of digester gas that is produced from sludge through anaerobic digestion process. Using digester gas as a fuel lead to study combined-heat-and-power technologies, where fuel cell is selected in order to abide by the low emissions constraint. The study assessed the electrical power obtained from fuel cell and the utilization of the exhausted heat energy for additional electrical power production using a micro-turbine. After covering the major part of load demand, the use of other renewable energy sources was studied. The strength of both solar and wind energy was determined by the case-study location. Hybrid optimization model for electric renewable (HOMER) software was used to simulate the hybrid system composed of combined-heat-and-power units, wind turbines and photovoltaic systems. Simulation results gave the best system configuration and optimum size of each component beside the detailed electrical and cost analysis of the model.
基金support provided by the Nature Science Foundation of Shandong Province(ZR201709180049)the Shandong Key Research and Development Program(2019GSF109023).
文摘In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large community,andMSW was classified and utilized.The systemoperated by determining power by heating load,and measures were taken to reduce operating costs by purchasing and selling LNG,natural gas(NG),cooling,heating,and power.Based on this system model,three operation strategies were proposed based on whether MSW was classified and the length of kitchen waste fermentation time,and each strategy was simulated hourly throughout the year.The results showed that the strategy of MSW classified and centralized fermentation of kitchen waste in summer(i.e.,strategy 3)required the least total amount of LNG for the whole year,which was 47701.77 t.In terms of total annual cost expenditure,strategy 3 had the best overall economy,with the lowest total annual expenditure of 2.7730×108 RMB at LNG and NG unit prices of 4 and 4.2 RMB/kg,respectively.The lower heating value of biogas produced by fermentation of kitchen waste from MSW being classified was higher than that of MSW before being classified,so the average annual thermal economy of the operating strategy of MSW being classified was better than that of MSW not being classified.Among the strategies in which MSW was classified and utilized,strategy 3 could better meet the load demand of users in the corresponding season,and thus this strategy had better thermal economy than the strategy of year-round fermentation of kitchen waste(i.e.,strategy 2).The hourly analysis data showed that the net electrical efficiency of the system varies in the same trend as the cooling,heating and power loads in all seasons,while the relationship between the energy utilization efficiency and load varied from season to season.This study can provide guidance for the practical application of MSW being classified in the system.
基金supported by National Natural Science Foundation of China No. 51274224the China Scholarship Council (CSC) (No. 201706440092)
文摘A new waste heat recovery system is presented to recover exhausted steam waste heat from the steam turbine by absorption heat pump(AHP) in a gas-steam combined cycle(GSCC) power plant. The system can decrease energy consumption and further improve the energy utilization. The performance evaluation criteria are calculated, and exergy analysis for key components are implemented in terms of the energy and exergy analysis theory. Besides, the change of these criteria is also revealed before and after modification. The net power output approximately increases by 21738 kW, and equivalent coal consumption decreases by 5.58 g/kWh. A 1.81% and 1.92% increase in the thermal and exergy efficiency is respectively obtained in the new integrated system as the heating load is 401095 kJ at 100% condition. Meanwhile, the appropriate extraction parameters for heating have been also analyzed in the two systems. The proposed scheme can not only save energy consumption but also reduce emission and gain great economic benefit, which is proven to be a huge potential for practical application.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2011CB707206)
文摘The Rankine cycle system for waste heat recovery of heavy-duty vehicle diesel engines has been regarded as a promising tech- nique to reduce fuel consumption. Its heat dissipation in the condensation process, however, should be take:l away in time, which is an energy-consuming process. A fan-assisted auxiliary water-cooling system is employed in this paper. Results at 1300 r/min and 50% load indicate that the cooling pump and cooling fan together consume 7.66% of the recovered power. What's worse for the heavy load, cooling accessories may deplete of all the recovered power of the Rankine cycle system. Af- terwards, effects of the condensing pressure and water feeding temperature are investigated, based on which a cooling power consumption model is established. Finally, an overall efficiency optimization is conducted to balance the electric power gener- ation and cooling power consumption, taking condensing pressure, pressure ratio and exhaust bypass valve as major variables. The research suggests that the priority is to increase condensing pressure and open exhaust bypass valve appropriately at high speed and heavy load to reduce the cooling power consumption, while at low speed and light load, a lower condensing pressure is favored and the exhaust bypass valve should be closed making the waste heat recovered as much as possible. Within the sub-critical region, a larger pressure ratio yields higher overall efficiency improvement at medium-low speed and load. But the effects taper off at high speed and heavy load. For a given vehicular heavy-duty diesel engine, the overall e:'ficiency can be improved by 3.37% at 1300 r/min and 25% load using a Rankine cycle system to recover exhaust energy. The improvement becomes smaller as engine speed and load become higher.