期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Continuous Preparation of Chitosan‑Based Self‑Powered Sensing Fibers Recycled from Wasted Materials for Smart Home Applications 被引量:2
1
作者 Yingying Li Chuanhui Wei +5 位作者 Yang Jiang Renwei Cheng Yihan Zhang Chuan Ning Kai Dong Zhong Lin Wang 《Advanced Fiber Materials》 SCIE EI 2022年第6期1584-1594,共11页
Currently,the gradual depletion of fossil resources and the large amount of plastic waste are causing serious harm to the land and marine ecology.The rapid development of wearable smart fibers is accompanied by rapid ... Currently,the gradual depletion of fossil resources and the large amount of plastic waste are causing serious harm to the land and marine ecology.The rapid development of wearable smart fibers is accompanied by rapid growth in the material demand for fibers,and the development of green and high-performance biomass-based fibers has become an important research topic to reduce the dependence on synthetic fiber materials and the harm to the environment.Here,chitosan is first prepared from the waste material by chemical methods.Then the chitosan-based self-powered induction fibers are prepared by electrospinning core wire technique.Chitosan-based self-powered sensing fiber is ultra-light and flexible,which can achieve about 2500 collisions without damaging the surface.Chitosan-based self-powered sensing fiber can also be used in smart home sensing applications to control home appliance switches with a light touch,which has a great application prospect in smart home and wearable fields. 展开更多
关键词 Recycled wasted materials Chitosan nanofibers ELECTROSPINNING Self-powered sensing Smart home
原文传递
Mn3O4/carbon nanotube nanocomposites recycled from waste alkaline Zn–MnO2 batteries as high-performance energy materials 被引量:5
2
作者 Li-Hua Zhang Si-Si Wu +5 位作者 Yi Wan Yi-Feng Huo Yao-Cong Luo Ming-Yang Yang Min-Chan Li Zhou-Guang Lu 《Rare Metals》 SCIE EI CAS CSCD 2017年第5期442-448,共7页
Alkaline zinc manganese dioxide(Zn–MnO2)batteries are widely used in everyday life. Recycling of waste alkaline Zn–MnO2 batteries has always been a hot environmental concern. In this study, a simple and costeffect... Alkaline zinc manganese dioxide(Zn–MnO2)batteries are widely used in everyday life. Recycling of waste alkaline Zn–MnO2 batteries has always been a hot environmental concern. In this study, a simple and costeffective process for synthesizing Mn3O4/carbon nanotube(CNT) nanocomposites from recycled alkaline Zn–MnO2 batteries is presented. Manganese oxide was recovered from spent Zn–MnO2 battery cathodes. The Mn3O4/CNT nanocomposites were produced by ball milling the recovered manganese oxide in a commercial multi-wall carbon nanotubes(MWCNTs) solution. Scanning electron microscopy(SEM) analysis demonstrates that the nanocomposite has a unique three-dimensional(3D) bird nest structure. Mn3O4 nanoparticles are homogeneously distributed on MWCNT framework. Mn3O4/CNT nanocomposites were evaluated as an anode material for lithium-ion batteries, exhibiting a highly reversible specific capacitance of -580 mA h·g^-1 after 100 cycles. Moreover, Mn3O4/CNT nanocomposite also shows a fairly positive onset potential of -0.15 V and quite high oxygen reducibility when considered as an electrocatalyst for oxygen reduction reaction. 展开更多
关键词 waste Zn–MnO2 batteries recycling Nanocomposites Anode materials Oxygen reduction reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部