A neighborhood search algorithm was proposed to simultaneously schedule the waste removal quantity and the equipment fleet profile over the mine life for open pit mines.An initial search domain was first defined and a...A neighborhood search algorithm was proposed to simultaneously schedule the waste removal quantity and the equipment fleet profile over the mine life for open pit mines.An initial search domain was first defined and a good schedule was obtained as the current best schedule by searching in this domain.Then,progressively narrower neighborhood search domains were constructed around the current best schedule to search for better schedules.The objective is to minimize the present value of waste removal costs over the mine life.The resulting schedule from this algorithm provides a complete fleet profile for each year over the mine life:the selected equipment models,the number of equipment units of each model,the age of each unit,as well as the quantity of waste removed.A numerical example of application was provided to demonstrate the feasibility and merits of the algorithm.展开更多
Oyster shell and cement were taken as the major raw materials to fabricate hollow, tubular and recoverable material for phosphorous removal (P removal) from waste water without sintering. In this paper, the effects ...Oyster shell and cement were taken as the major raw materials to fabricate hollow, tubular and recoverable material for phosphorous removal (P removal) from waste water without sintering. In this paper, the effects of different affecting factors on the sample P removal ratio were discussed to select optimal P removal process conditions. SEM and XRD were used to characterize the microscopic structures and composition of samples, and molybdenum blue spectrophotometry was applied to determine the P content in waste water. Results showed that at 30 ℃ for 2 d, the P removal ratio reached 93.3% when the cement content was 10 wt% and oyster shell powder was 90 wt%. SEM analysis revealed a flaky structure consisting of phosphorus-containing compound in the samples after P removal, and it piled on and maintained the porous structure. In addition, the results also suggested that raising the ambient temperature was benefit to the P removal. The P removal ratio of the material was optimal under neutral and alkali conditions.展开更多
In order to reasonably utilize the iron resources of copper slags, the smelting chlorination process was used to remove copper from copper slags. Higher holding temperature and O2 flow rate are beneficial to increasin...In order to reasonably utilize the iron resources of copper slags, the smelting chlorination process was used to remove copper from copper slags. Higher holding temperature and O2 flow rate are beneficial to increasing copper removal rate. However,the Cu2O mode is formed by the reaction of surplus O2 and CuCl with O2 flow rate increasing over 0.4 L/min, causing CuCl volatilization rate and copper removal rate to decrease. The resulting copper removal rate of 84.34% is obtained under the optimum conditions of holding temperature of 1573 K, residence time of 10 min, Ca Cl2 addition amount of 0.1(mass ratio of CaCl2 and the copper slag) and oxygen flow rate of 0.4 L/min. The efficient removal of copper from copper slags through chlorination is feasible.展开更多
Knowledge about heavy metal release from industrial solid wastes(ISWs) is crucial for better management of their environmental risks. This study was conducted to investigate the effect of organic and inorganic acids, ...Knowledge about heavy metal release from industrial solid wastes(ISWs) is crucial for better management of their environmental risks. This study was conducted to investigate the effect of organic and inorganic acids, clay minerals, and nanoparticles(NPs) on the release of heavy metals from sugar factory waste, ceramic factory waste, leather factory waste, and stone cutting waste. The influence of the extractants on heavy metal release from these ISWs was in the following descending order: citric acid > oxalic acid > nitric acid≥ sulfuric acid > Ca Cl2. Addition of clay minerals and NPs as adsorbents decreased heavy metal release, which was significantly lower in NP-treated wastes than in the clay mineral-treated wastes. On the other hand, the presence of organic and inorganic acids increased heavy metal adsorption by NPs and clay minerals. These results suggest that NPs can be applied successfully in waste remediation,and organic and inorganic acids play an important role in the removal of heavy metals from the studied adsorbents.展开更多
An alternating mesophilic and thermophilic two stage anaerobic digestion (AD) process was conducted. The temperature of the acidogenic (A) and methanogenic (M) reactors was controlled as follows: System 1 (S1...An alternating mesophilic and thermophilic two stage anaerobic digestion (AD) process was conducted. The temperature of the acidogenic (A) and methanogenic (M) reactors was controlled as follows: System 1 (S1) mesophilic A-mesophilic M; (S2) mesophilic A-thermophilic M; and (S3) thermophilic A-mesophilic M. Initially, the AD reactor was acclimatized and inoculated with digester sludge. Food waste was added with the soluble chemical oxygen demand (SCOD) concentrations of 41.4-47.0 g/L and volatile fatty acids of 2.0-3.2 g/L. Based on the results, the highest total chemical oxygen demand removal (86.6%) was recorded in S2 while S3 exhibited the highest SCOD removal (96.6%). Comparing S1 with S2, total solids removal increased by 0.5%;S3 on the other hand decreased by 0.1% as compared to S1. However, volatile solids (VS) removal in S1, S2, and S3 was 78.5%, 81.7%, and 79.2%, respectively. S2 also exhibited the highest CH4 content, yield, and production rate of 70.7%, 0.44 L CH4/g VSadded, and 1.23 L CH4/(L.day), respectively. Bacterial community structure revealed that the richness, diversity, evenness, and dominance of S2 were high except for the archaeal community. The terminal restriction fragments dendrogram also revealed that the microbial community of the acidogenic and methanogenic reactors in S2 was distinct. Therefore, S2 was the best among the systems for the operation of two-stage AD of food waste in terms of CH4 production, nutrient removal, and microbial community structure.展开更多
Iron-modified corn straw biochar was used as an adsorbent to remove phosphorus from agricultural runoff. When agricultural runoffs with a total phosphorus (TP) concentration of 1.86 mg.L-1 to 2.47 mg.L-1 were filter...Iron-modified corn straw biochar was used as an adsorbent to remove phosphorus from agricultural runoff. When agricultural runoffs with a total phosphorus (TP) concentration of 1.86 mg.L-1 to 2.47 mg.L-1 were filtered at a hydraulic retention time of 2 h through a filtration column packed with the modified biochar, a TP removal efficiency of over 99% and an effluent TP concentration of less than 0.02mg.L-1 were achieved. The isotherms of the phosphorus adsorption by the modified biochar fitted the Freundlich equation better than the Langmuir equation. The mechanism of the phosphorus adsorbed by the modified biochar was analyzed by using various technologies, i.e. scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). The results indicated that the surface of the modified biochar was covered by small iron granules, which were identified as Fe304. The results also showed that new iron oxides were formed on the surface of the modified biochar after the adsorption of phosphorus. Moreover, new bonds of Fe- O-P and P-C were found, which suggested that the new iron oxides tend to be Fe5(PO4)4(OH)3. Aside from removing phosphorus, adding the modified biochar into soil also improved soil productivity. When the modified biochar-to-soil rate was 5%, the stem, root, and bean of broad bean plants demonstrated increased growth rates of 91%, 64%, and 165%, respectively.展开更多
基金Projects(51474049,51674062)supported by the National Natural Science Foundation of ChinaProject(51604061)supported by the National Science Foundation for Young Scientists of China+3 种基金Projects(201202075,2014020040)supported by the Liaoning Natural Science Founds,ChinaProject(LZ2014020)supported by the Liaoning Province’s Key Laboratory Construction,ChinaProject(20130042110012)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(F14-231-1-07)supported by the Shenyang Technical Plan Project,China
文摘A neighborhood search algorithm was proposed to simultaneously schedule the waste removal quantity and the equipment fleet profile over the mine life for open pit mines.An initial search domain was first defined and a good schedule was obtained as the current best schedule by searching in this domain.Then,progressively narrower neighborhood search domains were constructed around the current best schedule to search for better schedules.The objective is to minimize the present value of waste removal costs over the mine life.The resulting schedule from this algorithm provides a complete fleet profile for each year over the mine life:the selected equipment models,the number of equipment units of each model,the age of each unit,as well as the quantity of waste removed.A numerical example of application was provided to demonstrate the feasibility and merits of the algorithm.
基金Sponsored by the 2007 Fujian University and College New Century Excellent Talent Support Program (No. XSJRC2007-17)Natural Science Foundation of Fujian Province of China(No. 2010J01279)
文摘Oyster shell and cement were taken as the major raw materials to fabricate hollow, tubular and recoverable material for phosphorous removal (P removal) from waste water without sintering. In this paper, the effects of different affecting factors on the sample P removal ratio were discussed to select optimal P removal process conditions. SEM and XRD were used to characterize the microscopic structures and composition of samples, and molybdenum blue spectrophotometry was applied to determine the P content in waste water. Results showed that at 30 ℃ for 2 d, the P removal ratio reached 93.3% when the cement content was 10 wt% and oyster shell powder was 90 wt%. SEM analysis revealed a flaky structure consisting of phosphorus-containing compound in the samples after P removal, and it piled on and maintained the porous structure. In addition, the results also suggested that raising the ambient temperature was benefit to the P removal. The P removal ratio of the material was optimal under neutral and alkali conditions.
基金Project(51204082)supported by the National Natural Science Foundation of ChinaProject(KKZ3201252011)supported by Talent Cultivation Project of Kunming University of Science and Technology,China
文摘In order to reasonably utilize the iron resources of copper slags, the smelting chlorination process was used to remove copper from copper slags. Higher holding temperature and O2 flow rate are beneficial to increasing copper removal rate. However,the Cu2O mode is formed by the reaction of surplus O2 and CuCl with O2 flow rate increasing over 0.4 L/min, causing CuCl volatilization rate and copper removal rate to decrease. The resulting copper removal rate of 84.34% is obtained under the optimum conditions of holding temperature of 1573 K, residence time of 10 min, Ca Cl2 addition amount of 0.1(mass ratio of CaCl2 and the copper slag) and oxygen flow rate of 0.4 L/min. The efficient removal of copper from copper slags through chlorination is feasible.
文摘Knowledge about heavy metal release from industrial solid wastes(ISWs) is crucial for better management of their environmental risks. This study was conducted to investigate the effect of organic and inorganic acids, clay minerals, and nanoparticles(NPs) on the release of heavy metals from sugar factory waste, ceramic factory waste, leather factory waste, and stone cutting waste. The influence of the extractants on heavy metal release from these ISWs was in the following descending order: citric acid > oxalic acid > nitric acid≥ sulfuric acid > Ca Cl2. Addition of clay minerals and NPs as adsorbents decreased heavy metal release, which was significantly lower in NP-treated wastes than in the clay mineral-treated wastes. On the other hand, the presence of organic and inorganic acids increased heavy metal adsorption by NPs and clay minerals. These results suggest that NPs can be applied successfully in waste remediation,and organic and inorganic acids play an important role in the removal of heavy metals from the studied adsorbents.
基金supported by the Korean Ministry of Agriculture, Food and Rural Affairs (313007-03-1-HD020)
文摘An alternating mesophilic and thermophilic two stage anaerobic digestion (AD) process was conducted. The temperature of the acidogenic (A) and methanogenic (M) reactors was controlled as follows: System 1 (S1) mesophilic A-mesophilic M; (S2) mesophilic A-thermophilic M; and (S3) thermophilic A-mesophilic M. Initially, the AD reactor was acclimatized and inoculated with digester sludge. Food waste was added with the soluble chemical oxygen demand (SCOD) concentrations of 41.4-47.0 g/L and volatile fatty acids of 2.0-3.2 g/L. Based on the results, the highest total chemical oxygen demand removal (86.6%) was recorded in S2 while S3 exhibited the highest SCOD removal (96.6%). Comparing S1 with S2, total solids removal increased by 0.5%;S3 on the other hand decreased by 0.1% as compared to S1. However, volatile solids (VS) removal in S1, S2, and S3 was 78.5%, 81.7%, and 79.2%, respectively. S2 also exhibited the highest CH4 content, yield, and production rate of 70.7%, 0.44 L CH4/g VSadded, and 1.23 L CH4/(L.day), respectively. Bacterial community structure revealed that the richness, diversity, evenness, and dominance of S2 were high except for the archaeal community. The terminal restriction fragments dendrogram also revealed that the microbial community of the acidogenic and methanogenic reactors in S2 was distinct. Therefore, S2 was the best among the systems for the operation of two-stage AD of food waste in terms of CH4 production, nutrient removal, and microbial community structure.
文摘Iron-modified corn straw biochar was used as an adsorbent to remove phosphorus from agricultural runoff. When agricultural runoffs with a total phosphorus (TP) concentration of 1.86 mg.L-1 to 2.47 mg.L-1 were filtered at a hydraulic retention time of 2 h through a filtration column packed with the modified biochar, a TP removal efficiency of over 99% and an effluent TP concentration of less than 0.02mg.L-1 were achieved. The isotherms of the phosphorus adsorption by the modified biochar fitted the Freundlich equation better than the Langmuir equation. The mechanism of the phosphorus adsorbed by the modified biochar was analyzed by using various technologies, i.e. scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). The results indicated that the surface of the modified biochar was covered by small iron granules, which were identified as Fe304. The results also showed that new iron oxides were formed on the surface of the modified biochar after the adsorption of phosphorus. Moreover, new bonds of Fe- O-P and P-C were found, which suggested that the new iron oxides tend to be Fe5(PO4)4(OH)3. Aside from removing phosphorus, adding the modified biochar into soil also improved soil productivity. When the modified biochar-to-soil rate was 5%, the stem, root, and bean of broad bean plants demonstrated increased growth rates of 91%, 64%, and 165%, respectively.