We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey s...We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey soils containing different percentages of waste rubber particles(WRPs)by performing several tests(viz.consistency limit,linear shrinkage limit,double hydrometer,crumb test and pinhole test)and scanning electron microscopy(SEM)analysis on five clayey(viz.Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin and Afyon clay)samples containing 0%,5%,10%and 15%WRPs.It should be noted that Erenson(2023)has presented some interesting observations,but there are some serious issues that we want to share through this discussion and request the author of the original paper to address them to avoid their persistence in the scientific literature.展开更多
This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and...This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles.展开更多
Recycling and reusing materials from waste have become a nexus in the development of sustainable materials,leading to more balanced technologies.In this study,we developed a composite coating by co-depositing recycled...Recycling and reusing materials from waste have become a nexus in the development of sustainable materials,leading to more balanced technologies.In this study,we developed a composite coating by co-depositing recycled ceramic particles,pulverised fly ash(PFA)and medical ceramics(MC),into a nickel–phosphorus matrix using a typical electroless plating process.Scanning electron microscopy(SEM)images indicated well-dispersed particles in the Ni–P matrix.However,compared with the MC particles,the PFA particles were distributed scantily with a lower content in the matrix,which could be due to the less impingement effect during the co-deposition.A modified microstructure with refined grains was obtained for the PFA-incorporated composite coating,as seen in the SEM micrograph.The X-ray diffraction result of the MC-incorporated composite coating showed the formation of Nix Siy phases in addition to the typical Ni3 P phases for the heattreated electroless Ni–P coatings.Upon heat treatment,the PFA-reinforced composite coating,due to a modified microstructure,exhibited a higher microhardness up to HK0.05818,which is comparable to that of the traditional SiC particle-embedded composite coating(HK0.05825).The findings can potentially open up a new strategy to further advance the green approach for industrial surface engineering.展开更多
The rubber-containing waste materials have been widely used to improve the engineering properties of soils in recent years.Among others,granular rubbers are utilized in various ways to increase the bearing capacity an...The rubber-containing waste materials have been widely used to improve the engineering properties of soils in recent years.Among others,granular rubbers are utilized in various ways to increase the bearing capacity and shear strength and to reduce the settlement and liquefaction potential of soils.The granular rubbers have many advantages such as temperature resistance,flexibility,tear-resistance,non-slip,and thermal and electrical insulation.This study presents the distribution characteristics of five different types of clayey soils with different engineering properties containing waste rubber particles(WRPs).On the other hand,determining and controlling the dispersion characteristics of clayey soils is two significant engineering problems.The study aims to solve these two remarkable and problematic issues in an eco-friendly and safe way.The role of WRP treatment in the investigation of soil dispersion behavior,which can cause dangerous problems such as piping,erosion,and dispersion,reflects the original and different perspectives of this study.Within this scope,geotechnical parameters of the clayey soils were determined.Subsequently,pinhole test,crumb test,double hydrometer test,and scanning electron microscopy(SEM)analysis were performed on the Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin,and Afyon clay samples with different percentages of WRPs(0%,5%,10%,and 15%).Consequently,Avanos and Ukrainian kaolin clays gave the most limited response to the dispersion behavior with the addition of WRP.Also,WRP treatment on the ball clay and bentonite samples showed limited efficiency.Afyon clay,which was defined as dispersive by the three tests that determined its dispersion potential,showed 3 level changes in the pinhole tests and 2 level changes in the crumb tests,and gave the most effective results in terms of WRP efficiency.展开更多
The environmentally friendly and resourceful utilization of organic waste liquid is one of the frontiers of environmental engineering. With the increasing demand for chemicals, the problem of organic waste liq- uid wi...The environmentally friendly and resourceful utilization of organic waste liquid is one of the frontiers of environmental engineering. With the increasing demand for chemicals, the problem of organic waste liq- uid with a high concentration of inorganic pollutants in the processing of petroleum, coal, and natural gas is becoming more serious. In this study, the high-speed self-rotation and flipping of particles in a three- dimensional cyclonic turbulent field was examined using a synchronous high-speed camera technique; the self-rotation speed was found to reach 2000-6000 rad.s 1. Based on these findings, a cyclonic gas- stripping method for the removal of organic matter from the pores of particles was invented. A techno- logical process was developed to recover organic matter from waste liquid by cyclonic gas stripping and classifying inorganic particles by means of airflow acceleration classification. A demonstration device was built in Sinopec's first ebullated-bed hydro-treatment unit for residual oil. Compared with the T-STAR fixed-bed gas-stripping technology designed in the United States, the maximum liquid-removal effi- ciency of the catalyst particles in this new process is 44.9% greater at the same temperature, and the time required to realize 95% liquid-removal efficiency is decreased from 1956.5 to 8.4 s. In addition, we achieved the classification and reuse of the catalyst particles contained in waste liquid according to their activity. A proposal to use this new technology was put forward regarding the control of organic waste liquid and the classification recovery of inorganic particles in an ebullated-bed hydro-treatment process for residual oil with a processing capacity of 2×106 t.a^1. It is estimated that the use of this new tech- nology will lead to the recovery of 3100 t.a 1 of diesel fuel and 647 t.a^1 of high-activity catalyst; in addi- tion, it will reduce the consumption of fresh catalyst by 518 t.a^1. The direct economic benefits of this process will be as high as 37.28 million CNY per year.展开更多
Based on a puff model . and together with the consideration of convection , dispersion and descent of suspended waste particles in marine environment , a numerical model is presented to predict the initial sedimentati...Based on a puff model . and together with the consideration of convection , dispersion and descent of suspended waste particles in marine environment , a numerical model is presented to predict the initial sedimentation of waste particles discharged from ocean outfalls in coastal waters and to compute the stable sedimentation rate in homogeneous trde current fields with water depth constant . When the time step selected is small enough , the results from this model agree well with that from the semi-analytical solution , and have sufficient precision for evaluating the impact on the environment caused by sedimentation of waste particles discharged from ocean outfalls. A numerical example is given for predicting the sedimentation of waste particles discharged in Heishijiao , Dalian .展开更多
This paper investigates the leaching behavior of heavy metals(V,Pb,Cd,Cr,and As) from stone coal waste rocks with various particle sizes using dynamic leaching experiments.The results show that the dissolved concentra...This paper investigates the leaching behavior of heavy metals(V,Pb,Cd,Cr,and As) from stone coal waste rocks with various particle sizes using dynamic leaching experiments.The results show that the dissolved concentrations of V and As initially increased and then slightly decreased as time progressed and that the dissolved concentrations of Pb,Cd,and Cr were high in the early stage before decreasing.The particle size of the stone coal waste rocks strongly influenced the heavy metal concentration in the leaching solutions.The effects of the particle size of the stone coal waste rocks on the dissolved concentrations of V,Pb,and As decreased in the order fine fraction > medium fraction > coarse fraction,and the effects of particle size on the dissolved concentrations of Cr and Cd decreased in the order medium fraction > coarse fraction > fine fraction and coarse fraction > medium fraction > fine fraction,respectively.The quantities of heavy metals dissolved from the stone coal waste rock with fine particle sizes were observed to decrease in the order V(17104.36 μg/kg) > As(609.41 μg/kg) > Pb(469.24 μg/kg) > Cr(56.35 μg/kg) > Cd(27.52 μg/kg),and the dissolution rates decreased in the order As(2.96%) > Pb(0.93%) > V(0.35%) > Cd(0.25%) > Cr(0.01%).The specific surface area,pore size of the stone coal waste rocks,and chemical forms of heavy metals also influenced the release of heavy metals from the stone coal waste rocks.Kinetic analysis showed that the dissolution of heavy metals fundamentally agreed with the rate equation controlled by the shrinking core model.The results of this study are expected to serve as a reference for the evaluation of heavy metals contamination from stone coal waste rocks.展开更多
Objective Particulate samples from the atmosphere in an electronic waste dismantling area were collected to investigate the levels and sources of polychlorinated dibenzo‐p‐dioxins and dibenzofurans (PCDD/Fs). Meth...Objective Particulate samples from the atmosphere in an electronic waste dismantling area were collected to investigate the levels and sources of polychlorinated dibenzo‐p‐dioxins and dibenzofurans (PCDD/Fs). Methods Particulate samples including total suspended particulates (TSP) and particulate matter 2.5 μm diameter (PM2.5) were collected on selected non‐rainy days in summer (Jul 10–12, 2006) and winter (Jan 11–13, 2007) from Fengjiang (FJ), an electronic waste (e‐waste) dismantling area in eastern China, and an adjacent area Luqiao (LQ). The samples were analyzed by isotope dilution‐high resolution gas chromatography / high resolution mass spectrometry (HRGC/HRMS). Results In FJ, the mean PCDD/F concentrations (mean TEQ values) were 280.6 pg Nm‐3 (3.432 pg WHO‐TEQ Nm‐3) for the TSP samples and 223.3 pg Nm‐3 (3.180 pg WHO‐TEQ Nm‐3) for the PM2.5 samples. The total PCDD/F concentrations and TEQs in the PM2.5 samples were about 66.8%‐108.0% of the TSP samples, indicating that the fine particles contained higher levels of PCDD/Fs than coarse particles. The PCDD/F levels in FJ were much higher than those detected in common urban areas around the world, suggesting that the study area was heavily polluted by PCDD/Fs. Furthermore, the total average daily PCDD/F intake in FJ was estimated at 62.11 pg WHO‐TEQ kg‐1·day‐1 for adults and 110.11 pg WHO‐TEQ kg‐1·day‐1 for children, which greatly exceeds the WHO (1998) tolerable daily intake of 1–4 pg of WHO‐TEQ kg‐1·day‐1. Conclusion The PCDD/F homologues and congener profiles confirmed that the PCDD/Fs in FJ originated from crude e‐waste recycling activities. The severe dioxin pollution present in FJ has also substantially influenced the adjacent area of LQ through atmospheric transport. Open burning of medical waste was another source of PCDD/Fs identified in LQ.展开更多
CDW (construction and demolition wastes) present a high amount of aggregate chips covered with mortar. This results in high absorption of water with a direct impact in particle breakage or disaggregation. It is supp...CDW (construction and demolition wastes) present a high amount of aggregate chips covered with mortar. This results in high absorption of water with a direct impact in particle breakage or disaggregation. It is supposed that intra particle suction plays an important role in this phenomenon. However, WRCs (water retention curves) of CDW are not well understood. In this work, the WRCs of dynamically compacted specimens of aggregates recycled from the demolition of the National Stadium in Brasilia are studied. The objective of this study is to obtain WRCs of the recycled materials by using the pressure plate and filter paper methods. The breaking effect during compaction is quantified from the grain size distribution curves. The particle breakage during compaction increases when the energy is augmented. The results from the WRCs were incorporated into a pore size capillary model to predict pore size distribution.展开更多
Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing po...Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters.展开更多
Water-rock flow is a kind of debris flow with more coarse particles and low viscosity, which occurs in many areas of the world. In this work, the water-rock flow that occurred on May 24, 2010, at Nanfen’s open-pit mi...Water-rock flow is a kind of debris flow with more coarse particles and low viscosity, which occurs in many areas of the world. In this work, the water-rock flow that occurred on May 24, 2010, at Nanfen’s open-pit mine of China was investigated by combining field investigation, meteorological and hydrological survey with numerical simulation to understand its triggering mechanism and dynamic process. The field data shows that the short-term high-intensity rainfall is the most direct inducement to trigger water-rock flow in the waste dump. The loose shallow gravel soil and the V-shaped valley with a certain slope provide the necessary conditions of the occurrence of water-rock flow in the waste dump. Moreover, the possibility criterion of water-rock flow is presented by analyzing the historical rainfall data. In addition, the smoothed particle hydrodynamics(SPH) method was employed to simulate the waterrock flow under the conditions of Newtonian fluid with uniform distribution of water and coarse-grained materials. The simulating results show that the flow distance, velocity, shape, and deposition profile of water-rock flow are in good agreement with the field observation. The present work is beneficial to the risk assessment and mitigation design of water-rock flow disaster in the waste dump.展开更多
PM2.5, total suspended particles (TSP) and gas phase samples were collected at two sites of Talzhou, a major e-waste dismantling area in China. Concentrations, seasonal variations, congener profiles, gas-particle pa...PM2.5, total suspended particles (TSP) and gas phase samples were collected at two sites of Talzhou, a major e-waste dismantling area in China. Concentrations, seasonal variations, congener profiles, gas-particle partitioning and size distribution of the atmospheric polychlorinated biphenyls (PCBs) were studied to assess the current state of atmospheric PCBs after the phase out of massive historical dismantling of PCBs containing e-wastes. The average ∑38PCBs concentration in the ambient air (TSP plus gas phase) near the e-waste dismantling area was (12,407 ± 9592) pg/m^3 in winter, which was substantially lower than that found one decade ago. However, the atmospheric PCBs level near the e-waste dismantling area was 54 times of the reference urban site, indicating that the impact of the historical dismantling of PCBs containing e-wastes was still significant. Tri-Penta-CBs were dominant homologues, consisting with their dominant global production. Size distribution of particle-bound PCBs showed that higher chlorinated CBs tended to partition more to the fine particles, facilitating its long range air transportation.展开更多
Copper gangue (CG), containing a large amount of water with grain sizes of 0.037 to 0.10mm,is an inactive industrial waste generated from copper refineries. When it is dried and used as a cement admixture, the inf...Copper gangue (CG), containing a large amount of water with grain sizes of 0.037 to 0.10mm,is an inactive industrial waste generated from copper refineries. When it is dried and used as a cement admixture, the influence of the presence of finely dispersed metallic particles in CG on the microstructure and compressive strength of cement paste has been studied.The results show that the higher the replacement of CG is,the lower the compressive strength of cement mortar is.However,the long-term strength of the specimens with 10% CG,especially after being cured for 3 months,approached to that of the plain mortar.Its mechanism was studied by an electron probe X-ray microanalyzer (EPXMA).The results indicate that a small quantity of Fe(OH) 3·nH 2O slowly formed from Fe 2O 3 in the presence of Ca(OH) 2, free CaO and MgO of the clinker also slowly hydrated and formed Ca(OH) 2 and Mg(OH) 2 respectively,so the hardened cement paste became more compact.展开更多
The primary energy demand increases, but a large amount of waste heat resources w</span><span style="font-family:Verdana;">ere </span><span style="font-family:Verdana;">...The primary energy demand increases, but a large amount of waste heat resources w</span><span style="font-family:Verdana;">ere </span><span style="font-family:Verdana;">not effectively used. To explore the influence of particle stacking structure on waste heat recovery process, CFD method was used to simulate. An unsteady heat transfer model of two particles was established, effect of particle stacking angle on heat transfer characteristics of the particles close to the wall under different initial temperature conditions was studied. Results show that: higher initial temperature, resulting in increased heat transfer time, the larger particle stacking angle causes the shortening of heat transfer time. When initial temperature is 1073</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">K, the average wall heat flux shows a trend of rapid decline first and then a slow one. At the same moment, the larger stacking angle causes smaller particle average temperature. The change of particle stacking angle shows a greater impact on the temperature of the particles close to adiabatic wall. The increase in the stacking angle resulting in better heat transfer characteristics between particles.展开更多
Recently, the demand for REEs (rare earth elements) has been heavily increasing, as they are used in many high-tech products (e.g., because of their specific magnetic behavior). As a result, the supply situation f...Recently, the demand for REEs (rare earth elements) has been heavily increasing, as they are used in many high-tech products (e.g., because of their specific magnetic behavior). As a result, the supply situation for REEs is worsening and the world market is depending on Chinese exports, so that it may be worthwhile to recycle e-waste (electronic waste) in European countries. This article describes an analytical method to analyze REEs in different kinds of e-waste with the help of a simultaneous ICP-OES (ICP optical emission spectrometer). The task is challenging because samples show significant differences in terms of major, minor and trace element concentrations. Depending on the field of application, the level of matrix elements and target elements differs completely, resulting in a wide variety of spectral interferences. The method presented in this article allows an accurate quantification of REEs as well as a high sample throughput. In addition to REEs, other elements of economic interest can be determined in the same way. The development of a sample preparation process is another important issue and considered as well.展开更多
The aim of this study was to assess the performance of the combustion process during medical waste incineration by studying physical properties of the ashes produced. Combustion characteristics data including maximum ...The aim of this study was to assess the performance of the combustion process during medical waste incineration by studying physical properties of the ashes produced. Combustion characteristics data including maximum temperatures, total weight of waste loaded, weight of ashes, weight reduction, sieve analysis and particle size distribution were determined experimentally. The test runs were conducted in a newly installed incinerator at Temeke district hospital. The average maximum temperatures achieved in the primary chamber was 397.8℃and 839℃ for secondary chamber with average incineration cycle time of 99 minutes. These temperatures were lower compared to the design temperatures of 650℃ and 950℃ as a result of loading wet waste. The ash samples were collected under the incinerator grate by randomly sampling the ashes for each run after weighing the total ash. The particle size distribution of ashes observed was not uniform due to presence of non-combustible materials in the sharps waste. However, the fineness modulus ranged between 2.0 and 4.0, which is in the acceptable range. From the above results it was concluded that, the incinerator performance was high in terms of the parameters assessed. To improve the incinerator performance further, it was recommended that the medical waste should be stored in a dry place away from rain.展开更多
Management of MSW(Municipal Solid Waste)is a major downside in most of the biggest cities.The composting of the organic fraction of MSW is one of the oldest and simplest ways of organic waste stabilization.It is a sel...Management of MSW(Municipal Solid Waste)is a major downside in most of the biggest cities.The composting of the organic fraction of MSW is one of the oldest and simplest ways of organic waste stabilization.It is a self-heating biological conversion that generates appropriate finished merchandise such as soil conditioner or fertilizers.Mexico City generates about 12,500 ton/day of MSW,44%of it is food scraps and yard trimmings which are the OFMSW(Organic Fraction of Municipal Solid Waste),2,500 ton/day of it is composted at the BPCP(Bordo Poniente Composting Plant)yielding 500 ton/day of compost.The purpose of this study was to evaluate three treatments to accelerate the composting process,so eventually the city could increase the amount of the OFMSW at BPCP.We compared three different treatments;one of them showed a significant reduction in time of the composting process(p≤0.05)i.e.,it took less time to reach the thermophilic stage,maturity and stabilization phases.Maturity was achieved at 35 days and 60 days to stabilize.We conclude that shredding the feedstock plus leachate inoculum addition at the beginning of the process,reduces the composting time in about 61%with respect to the time it takes at the BPCP,where lasted 90 days.展开更多
Rural vitalization is a major strategy for reform and development of agriculture and rural areas in China,the key task of which is improving rural living environment.Imperfect rural solid waste(RSW)collection and tran...Rural vitalization is a major strategy for reform and development of agriculture and rural areas in China,the key task of which is improving rural living environment.Imperfect rural solid waste(RSW)collection and transportation system exacerbates the pollution of RSW to rural living environment,while it has not been established and improved in the cold region of Northern China due to climate and economy.Through the analysis of the current situation of RSW source separation,collection,transportation and disposal in China,an RSW collection and transportation system suitable for the northern cold region was developed.Considering the low winter temperature in the northern cold region,different requirements for RSW collection,transportation and terminal disposal,scattered source points and single terminal disposal nodes in rural areas,the study focused on determining the number and location of transfer stations,established a model for transfer stations selection and RSW collection and transportation routes optimization for RSW collection and transportation system,and proposed the elite retention particle swarm optimization–genetic algorithm(ERPSO–GA).The rural area of Baiquan County was taken as a representative case,the collection and transportation scheme of which was given,and the feasibility of the scheme was clarified by simulation experiment.展开更多
Massive waste aluminum scraps produced from the spent aluminum products have high electron capacity and can be recycled as an attractive alternative to materials based on zerovalent iron(Fe^(0))for the removal of oxid...Massive waste aluminum scraps produced from the spent aluminum products have high electron capacity and can be recycled as an attractive alternative to materials based on zerovalent iron(Fe^(0))for the removal of oxidative contaminants from wastewater.This study thus proposed an approach to fabricate micron-sized sulfidated zero-valent iron-aluminum particles(S-Al^(0)@Fe^(0))with high reactivity,electron selectivity and capacity using recycled waste aluminum scraps.S-Al^(0)@Fe^(0)with a three-layer structure contained zero-valent aluminum(Al^(0))core,Fe^(0) middle layer and iron sulfide(FeS)shell.The rates of chromate(Cr(Ⅵ))removal by S-Al^(0)@Fe^(0)at pH 5.0-9.0 were 1.6-5.9 times greater than that by sulfidated zero-valent iron(S-Fe^(0)).The Cr(Ⅵ)removal capacity of S-Al^(0)@Fe^(0)was 8.2-,11.3-and 46.9-fold greater than those of S-Fe0,zero-valent iron-aluminum(Al^(0)-Fe^(0))and Fe^(0),respectively.The chemical cost of S-Al^(0)@Fe^(0) for the equivalent Cr(Ⅵ)removal was 78.5%lower than that of S-Fe^(0).Negligible release of soluble aluminum during the Cr(Ⅵ)removal was observed.The significant enhancement in the reactivity and capacity of S-Al^(0)@Fe^(0)was partially ascribed to the higher reactivity and electron density of the Al0core than Fe^(0).More importantly,S-Al^(0)@Fe^(0) served as an electric cell to harness the persistent and selective electron transfer from the Al^(0)-Fe^(0) core to Cr(Ⅵ)at the surface via coupling Fe^(0)-Fe^(2+)-Fe^(3+)redox cycles,resulting in a higher electron utilization efficiency.Therefore,S-Al^(0)@Fe^(0) fabricated using recycled waste aluminum scraps can be a cost-effective and environmentally-friendly alternative to S-Fe^(0) for the enhanced removal of oxidative contaminants in industrial wastewater.展开更多
文摘We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey soils containing different percentages of waste rubber particles(WRPs)by performing several tests(viz.consistency limit,linear shrinkage limit,double hydrometer,crumb test and pinhole test)and scanning electron microscopy(SEM)analysis on five clayey(viz.Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin and Afyon clay)samples containing 0%,5%,10%and 15%WRPs.It should be noted that Erenson(2023)has presented some interesting observations,but there are some serious issues that we want to share through this discussion and request the author of the original paper to address them to avoid their persistence in the scientific literature.
基金support and encouragement of the Joint Funds of the National Natural Science Foundation of China(No.U21B2095)the Major Research Project of National Natural Science Foundation of China(No.91834303).
文摘This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles.
基金the financial support from Queen’s University Belfast,UK,in the form of a studentship。
文摘Recycling and reusing materials from waste have become a nexus in the development of sustainable materials,leading to more balanced technologies.In this study,we developed a composite coating by co-depositing recycled ceramic particles,pulverised fly ash(PFA)and medical ceramics(MC),into a nickel–phosphorus matrix using a typical electroless plating process.Scanning electron microscopy(SEM)images indicated well-dispersed particles in the Ni–P matrix.However,compared with the MC particles,the PFA particles were distributed scantily with a lower content in the matrix,which could be due to the less impingement effect during the co-deposition.A modified microstructure with refined grains was obtained for the PFA-incorporated composite coating,as seen in the SEM micrograph.The X-ray diffraction result of the MC-incorporated composite coating showed the formation of Nix Siy phases in addition to the typical Ni3 P phases for the heattreated electroless Ni–P coatings.Upon heat treatment,the PFA-reinforced composite coating,due to a modified microstructure,exhibited a higher microhardness up to HK0.05818,which is comparable to that of the traditional SiC particle-embedded composite coating(HK0.05825).The findings can potentially open up a new strategy to further advance the green approach for industrial surface engineering.
基金supported by the Scientific Research Project of Aksaray University(Grant No.BAP-2021-31).
文摘The rubber-containing waste materials have been widely used to improve the engineering properties of soils in recent years.Among others,granular rubbers are utilized in various ways to increase the bearing capacity and shear strength and to reduce the settlement and liquefaction potential of soils.The granular rubbers have many advantages such as temperature resistance,flexibility,tear-resistance,non-slip,and thermal and electrical insulation.This study presents the distribution characteristics of five different types of clayey soils with different engineering properties containing waste rubber particles(WRPs).On the other hand,determining and controlling the dispersion characteristics of clayey soils is two significant engineering problems.The study aims to solve these two remarkable and problematic issues in an eco-friendly and safe way.The role of WRP treatment in the investigation of soil dispersion behavior,which can cause dangerous problems such as piping,erosion,and dispersion,reflects the original and different perspectives of this study.Within this scope,geotechnical parameters of the clayey soils were determined.Subsequently,pinhole test,crumb test,double hydrometer test,and scanning electron microscopy(SEM)analysis were performed on the Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin,and Afyon clay samples with different percentages of WRPs(0%,5%,10%,and 15%).Consequently,Avanos and Ukrainian kaolin clays gave the most limited response to the dispersion behavior with the addition of WRP.Also,WRP treatment on the ball clay and bentonite samples showed limited efficiency.Afyon clay,which was defined as dispersive by the three tests that determined its dispersion potential,showed 3 level changes in the pinhole tests and 2 level changes in the crumb tests,and gave the most effective results in terms of WRP efficiency.
基金This work was supported by the sponsorship of the National Science Foundation for Distinguished Young Scholars of China (51125032), the sponsorship of the National Key Research and Development Program of China (2016YFC0204500), and the National Natural Science Foundation of China (51608203).
文摘The environmentally friendly and resourceful utilization of organic waste liquid is one of the frontiers of environmental engineering. With the increasing demand for chemicals, the problem of organic waste liq- uid with a high concentration of inorganic pollutants in the processing of petroleum, coal, and natural gas is becoming more serious. In this study, the high-speed self-rotation and flipping of particles in a three- dimensional cyclonic turbulent field was examined using a synchronous high-speed camera technique; the self-rotation speed was found to reach 2000-6000 rad.s 1. Based on these findings, a cyclonic gas- stripping method for the removal of organic matter from the pores of particles was invented. A techno- logical process was developed to recover organic matter from waste liquid by cyclonic gas stripping and classifying inorganic particles by means of airflow acceleration classification. A demonstration device was built in Sinopec's first ebullated-bed hydro-treatment unit for residual oil. Compared with the T-STAR fixed-bed gas-stripping technology designed in the United States, the maximum liquid-removal effi- ciency of the catalyst particles in this new process is 44.9% greater at the same temperature, and the time required to realize 95% liquid-removal efficiency is decreased from 1956.5 to 8.4 s. In addition, we achieved the classification and reuse of the catalyst particles contained in waste liquid according to their activity. A proposal to use this new technology was put forward regarding the control of organic waste liquid and the classification recovery of inorganic particles in an ebullated-bed hydro-treatment process for residual oil with a processing capacity of 2×106 t.a^1. It is estimated that the use of this new tech- nology will lead to the recovery of 3100 t.a 1 of diesel fuel and 647 t.a^1 of high-activity catalyst; in addi- tion, it will reduce the consumption of fresh catalyst by 518 t.a^1. The direct economic benefits of this process will be as high as 37.28 million CNY per year.
文摘Based on a puff model . and together with the consideration of convection , dispersion and descent of suspended waste particles in marine environment , a numerical model is presented to predict the initial sedimentation of waste particles discharged from ocean outfalls in coastal waters and to compute the stable sedimentation rate in homogeneous trde current fields with water depth constant . When the time step selected is small enough , the results from this model agree well with that from the semi-analytical solution , and have sufficient precision for evaluating the impact on the environment caused by sedimentation of waste particles discharged from ocean outfalls. A numerical example is given for predicting the sedimentation of waste particles discharged in Heishijiao , Dalian .
基金financially supported by the Major Science and Technology Program for Water Pollution Control and Treatment of China (No.2015ZX07205003)
文摘This paper investigates the leaching behavior of heavy metals(V,Pb,Cd,Cr,and As) from stone coal waste rocks with various particle sizes using dynamic leaching experiments.The results show that the dissolved concentrations of V and As initially increased and then slightly decreased as time progressed and that the dissolved concentrations of Pb,Cd,and Cr were high in the early stage before decreasing.The particle size of the stone coal waste rocks strongly influenced the heavy metal concentration in the leaching solutions.The effects of the particle size of the stone coal waste rocks on the dissolved concentrations of V,Pb,and As decreased in the order fine fraction > medium fraction > coarse fraction,and the effects of particle size on the dissolved concentrations of Cr and Cd decreased in the order medium fraction > coarse fraction > fine fraction and coarse fraction > medium fraction > fine fraction,respectively.The quantities of heavy metals dissolved from the stone coal waste rock with fine particle sizes were observed to decrease in the order V(17104.36 μg/kg) > As(609.41 μg/kg) > Pb(469.24 μg/kg) > Cr(56.35 μg/kg) > Cd(27.52 μg/kg),and the dissolution rates decreased in the order As(2.96%) > Pb(0.93%) > V(0.35%) > Cd(0.25%) > Cr(0.01%).The specific surface area,pore size of the stone coal waste rocks,and chemical forms of heavy metals also influenced the release of heavy metals from the stone coal waste rocks.Kinetic analysis showed that the dissolution of heavy metals fundamentally agreed with the rate equation controlled by the shrinking core model.The results of this study are expected to serve as a reference for the evaluation of heavy metals contamination from stone coal waste rocks.
基金supported by the National Natural Scientific Foundation of China (No. 20907048 and 30771812)National Special Fund for Scientific Research in the Public Interest (200902009)+2 种基金the National High‐Tech Research Program of China (2006AA06Z403)a China Postdoctoral Science Foundation funded project (200902009)the Natural Science Foundation of Fujian Province (2009J05115)
文摘Objective Particulate samples from the atmosphere in an electronic waste dismantling area were collected to investigate the levels and sources of polychlorinated dibenzo‐p‐dioxins and dibenzofurans (PCDD/Fs). Methods Particulate samples including total suspended particulates (TSP) and particulate matter 2.5 μm diameter (PM2.5) were collected on selected non‐rainy days in summer (Jul 10–12, 2006) and winter (Jan 11–13, 2007) from Fengjiang (FJ), an electronic waste (e‐waste) dismantling area in eastern China, and an adjacent area Luqiao (LQ). The samples were analyzed by isotope dilution‐high resolution gas chromatography / high resolution mass spectrometry (HRGC/HRMS). Results In FJ, the mean PCDD/F concentrations (mean TEQ values) were 280.6 pg Nm‐3 (3.432 pg WHO‐TEQ Nm‐3) for the TSP samples and 223.3 pg Nm‐3 (3.180 pg WHO‐TEQ Nm‐3) for the PM2.5 samples. The total PCDD/F concentrations and TEQs in the PM2.5 samples were about 66.8%‐108.0% of the TSP samples, indicating that the fine particles contained higher levels of PCDD/Fs than coarse particles. The PCDD/F levels in FJ were much higher than those detected in common urban areas around the world, suggesting that the study area was heavily polluted by PCDD/Fs. Furthermore, the total average daily PCDD/F intake in FJ was estimated at 62.11 pg WHO‐TEQ kg‐1·day‐1 for adults and 110.11 pg WHO‐TEQ kg‐1·day‐1 for children, which greatly exceeds the WHO (1998) tolerable daily intake of 1–4 pg of WHO‐TEQ kg‐1·day‐1. Conclusion The PCDD/F homologues and congener profiles confirmed that the PCDD/Fs in FJ originated from crude e‐waste recycling activities. The severe dioxin pollution present in FJ has also substantially influenced the adjacent area of LQ through atmospheric transport. Open burning of medical waste was another source of PCDD/Fs identified in LQ.
文摘CDW (construction and demolition wastes) present a high amount of aggregate chips covered with mortar. This results in high absorption of water with a direct impact in particle breakage or disaggregation. It is supposed that intra particle suction plays an important role in this phenomenon. However, WRCs (water retention curves) of CDW are not well understood. In this work, the WRCs of dynamically compacted specimens of aggregates recycled from the demolition of the National Stadium in Brasilia are studied. The objective of this study is to obtain WRCs of the recycled materials by using the pressure plate and filter paper methods. The breaking effect during compaction is quantified from the grain size distribution curves. The particle breakage during compaction increases when the energy is augmented. The results from the WRCs were incorporated into a pore size capillary model to predict pore size distribution.
文摘Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters.
基金funded by the Fundamental Research Funds for the Central Universities,SCUT (No.2015QB02)the Special Fund for Yueqi Scholars (No.800015Z1207)。
文摘Water-rock flow is a kind of debris flow with more coarse particles and low viscosity, which occurs in many areas of the world. In this work, the water-rock flow that occurred on May 24, 2010, at Nanfen’s open-pit mine of China was investigated by combining field investigation, meteorological and hydrological survey with numerical simulation to understand its triggering mechanism and dynamic process. The field data shows that the short-term high-intensity rainfall is the most direct inducement to trigger water-rock flow in the waste dump. The loose shallow gravel soil and the V-shaped valley with a certain slope provide the necessary conditions of the occurrence of water-rock flow in the waste dump. Moreover, the possibility criterion of water-rock flow is presented by analyzing the historical rainfall data. In addition, the smoothed particle hydrodynamics(SPH) method was employed to simulate the waterrock flow under the conditions of Newtonian fluid with uniform distribution of water and coarse-grained materials. The simulating results show that the flow distance, velocity, shape, and deposition profile of water-rock flow are in good agreement with the field observation. The present work is beneficial to the risk assessment and mitigation design of water-rock flow disaster in the waste dump.
基金supported by the National Natural Science Foundation of China (No.40775084)the Shanghai Leading Academic Disciplines (No.S030109)
文摘PM2.5, total suspended particles (TSP) and gas phase samples were collected at two sites of Talzhou, a major e-waste dismantling area in China. Concentrations, seasonal variations, congener profiles, gas-particle partitioning and size distribution of the atmospheric polychlorinated biphenyls (PCBs) were studied to assess the current state of atmospheric PCBs after the phase out of massive historical dismantling of PCBs containing e-wastes. The average ∑38PCBs concentration in the ambient air (TSP plus gas phase) near the e-waste dismantling area was (12,407 ± 9592) pg/m^3 in winter, which was substantially lower than that found one decade ago. However, the atmospheric PCBs level near the e-waste dismantling area was 54 times of the reference urban site, indicating that the impact of the historical dismantling of PCBs containing e-wastes was still significant. Tri-Penta-CBs were dominant homologues, consisting with their dominant global production. Size distribution of particle-bound PCBs showed that higher chlorinated CBs tended to partition more to the fine particles, facilitating its long range air transportation.
文摘Copper gangue (CG), containing a large amount of water with grain sizes of 0.037 to 0.10mm,is an inactive industrial waste generated from copper refineries. When it is dried and used as a cement admixture, the influence of the presence of finely dispersed metallic particles in CG on the microstructure and compressive strength of cement paste has been studied.The results show that the higher the replacement of CG is,the lower the compressive strength of cement mortar is.However,the long-term strength of the specimens with 10% CG,especially after being cured for 3 months,approached to that of the plain mortar.Its mechanism was studied by an electron probe X-ray microanalyzer (EPXMA).The results indicate that a small quantity of Fe(OH) 3·nH 2O slowly formed from Fe 2O 3 in the presence of Ca(OH) 2, free CaO and MgO of the clinker also slowly hydrated and formed Ca(OH) 2 and Mg(OH) 2 respectively,so the hardened cement paste became more compact.
文摘The primary energy demand increases, but a large amount of waste heat resources w</span><span style="font-family:Verdana;">ere </span><span style="font-family:Verdana;">not effectively used. To explore the influence of particle stacking structure on waste heat recovery process, CFD method was used to simulate. An unsteady heat transfer model of two particles was established, effect of particle stacking angle on heat transfer characteristics of the particles close to the wall under different initial temperature conditions was studied. Results show that: higher initial temperature, resulting in increased heat transfer time, the larger particle stacking angle causes the shortening of heat transfer time. When initial temperature is 1073</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">K, the average wall heat flux shows a trend of rapid decline first and then a slow one. At the same moment, the larger stacking angle causes smaller particle average temperature. The change of particle stacking angle shows a greater impact on the temperature of the particles close to adiabatic wall. The increase in the stacking angle resulting in better heat transfer characteristics between particles.
文摘Recently, the demand for REEs (rare earth elements) has been heavily increasing, as they are used in many high-tech products (e.g., because of their specific magnetic behavior). As a result, the supply situation for REEs is worsening and the world market is depending on Chinese exports, so that it may be worthwhile to recycle e-waste (electronic waste) in European countries. This article describes an analytical method to analyze REEs in different kinds of e-waste with the help of a simultaneous ICP-OES (ICP optical emission spectrometer). The task is challenging because samples show significant differences in terms of major, minor and trace element concentrations. Depending on the field of application, the level of matrix elements and target elements differs completely, resulting in a wide variety of spectral interferences. The method presented in this article allows an accurate quantification of REEs as well as a high sample throughput. In addition to REEs, other elements of economic interest can be determined in the same way. The development of a sample preparation process is another important issue and considered as well.
文摘The aim of this study was to assess the performance of the combustion process during medical waste incineration by studying physical properties of the ashes produced. Combustion characteristics data including maximum temperatures, total weight of waste loaded, weight of ashes, weight reduction, sieve analysis and particle size distribution were determined experimentally. The test runs were conducted in a newly installed incinerator at Temeke district hospital. The average maximum temperatures achieved in the primary chamber was 397.8℃and 839℃ for secondary chamber with average incineration cycle time of 99 minutes. These temperatures were lower compared to the design temperatures of 650℃ and 950℃ as a result of loading wet waste. The ash samples were collected under the incinerator grate by randomly sampling the ashes for each run after weighing the total ash. The particle size distribution of ashes observed was not uniform due to presence of non-combustible materials in the sharps waste. However, the fineness modulus ranged between 2.0 and 4.0, which is in the acceptable range. From the above results it was concluded that, the incinerator performance was high in terms of the parameters assessed. To improve the incinerator performance further, it was recommended that the medical waste should be stored in a dry place away from rain.
基金This work was supported by the Institute of Science and Technology of Mexico City and the Ministry of Works and Services of the Government of Mexico City.
文摘Management of MSW(Municipal Solid Waste)is a major downside in most of the biggest cities.The composting of the organic fraction of MSW is one of the oldest and simplest ways of organic waste stabilization.It is a self-heating biological conversion that generates appropriate finished merchandise such as soil conditioner or fertilizers.Mexico City generates about 12,500 ton/day of MSW,44%of it is food scraps and yard trimmings which are the OFMSW(Organic Fraction of Municipal Solid Waste),2,500 ton/day of it is composted at the BPCP(Bordo Poniente Composting Plant)yielding 500 ton/day of compost.The purpose of this study was to evaluate three treatments to accelerate the composting process,so eventually the city could increase the amount of the OFMSW at BPCP.We compared three different treatments;one of them showed a significant reduction in time of the composting process(p≤0.05)i.e.,it took less time to reach the thermophilic stage,maturity and stabilization phases.Maturity was achieved at 35 days and 60 days to stabilize.We conclude that shredding the feedstock plus leachate inoculum addition at the beginning of the process,reduces the composting time in about 61%with respect to the time it takes at the BPCP,where lasted 90 days.
基金Supported by Heilongjiang Province Philosophy and Social Science Planning Research Project(22JYB232)。
文摘Rural vitalization is a major strategy for reform and development of agriculture and rural areas in China,the key task of which is improving rural living environment.Imperfect rural solid waste(RSW)collection and transportation system exacerbates the pollution of RSW to rural living environment,while it has not been established and improved in the cold region of Northern China due to climate and economy.Through the analysis of the current situation of RSW source separation,collection,transportation and disposal in China,an RSW collection and transportation system suitable for the northern cold region was developed.Considering the low winter temperature in the northern cold region,different requirements for RSW collection,transportation and terminal disposal,scattered source points and single terminal disposal nodes in rural areas,the study focused on determining the number and location of transfer stations,established a model for transfer stations selection and RSW collection and transportation routes optimization for RSW collection and transportation system,and proposed the elite retention particle swarm optimization–genetic algorithm(ERPSO–GA).The rural area of Baiquan County was taken as a representative case,the collection and transportation scheme of which was given,and the feasibility of the scheme was clarified by simulation experiment.
基金supported by the National Natural Science Foundation of China(No.42177358)the Natural Science Foundation of Guangdong Province(No.2023A1515011232)。
文摘Massive waste aluminum scraps produced from the spent aluminum products have high electron capacity and can be recycled as an attractive alternative to materials based on zerovalent iron(Fe^(0))for the removal of oxidative contaminants from wastewater.This study thus proposed an approach to fabricate micron-sized sulfidated zero-valent iron-aluminum particles(S-Al^(0)@Fe^(0))with high reactivity,electron selectivity and capacity using recycled waste aluminum scraps.S-Al^(0)@Fe^(0)with a three-layer structure contained zero-valent aluminum(Al^(0))core,Fe^(0) middle layer and iron sulfide(FeS)shell.The rates of chromate(Cr(Ⅵ))removal by S-Al^(0)@Fe^(0)at pH 5.0-9.0 were 1.6-5.9 times greater than that by sulfidated zero-valent iron(S-Fe^(0)).The Cr(Ⅵ)removal capacity of S-Al^(0)@Fe^(0)was 8.2-,11.3-and 46.9-fold greater than those of S-Fe0,zero-valent iron-aluminum(Al^(0)-Fe^(0))and Fe^(0),respectively.The chemical cost of S-Al^(0)@Fe^(0) for the equivalent Cr(Ⅵ)removal was 78.5%lower than that of S-Fe^(0).Negligible release of soluble aluminum during the Cr(Ⅵ)removal was observed.The significant enhancement in the reactivity and capacity of S-Al^(0)@Fe^(0)was partially ascribed to the higher reactivity and electron density of the Al0core than Fe^(0).More importantly,S-Al^(0)@Fe^(0) served as an electric cell to harness the persistent and selective electron transfer from the Al^(0)-Fe^(0) core to Cr(Ⅵ)at the surface via coupling Fe^(0)-Fe^(2+)-Fe^(3+)redox cycles,resulting in a higher electron utilization efficiency.Therefore,S-Al^(0)@Fe^(0) fabricated using recycled waste aluminum scraps can be a cost-effective and environmentally-friendly alternative to S-Fe^(0) for the enhanced removal of oxidative contaminants in industrial wastewater.