The conversion of waste tire pyrolysis oil(WTPO)into S-doped porous carbon nanorods(labeled as WPCNs)with hierarchical pore structure is realized by a simple template-directed approach.The specific surface area of as-...The conversion of waste tire pyrolysis oil(WTPO)into S-doped porous carbon nanorods(labeled as WPCNs)with hierarchical pore structure is realized by a simple template-directed approach.The specific surface area of as-obtained porous carbon nanorods can reach up to 1448 m^(2) g^(−1) without the addition of any activating agent.As the capacitive electrode,WPCNs possess the extraordinary compatibility to capacitance,different electrolyte systems as well as long-term cycle life even at a commercial-level areal mass loading(10 mg cm^(−2)).Besides,only an extremely small capacitance fluctuation is observed under the extreme circumstance(−40 to 80℃),reflecting the excellent high-and low-temperature performance.The relationship between the pore structure and capacitive behavior is analyzed by comparing WPCNs with mesopores-dominated asphalt-derived porous carbon nanorods(APCNs)and micropores-dominated activated carbon.The molecular dynamics simulation further reveals the ion diffusion and transfer ability of the as-prepared carbon materials under different pore size distribution.The total ion flow(NT)of WPCNs calculated by the simulation is obviously larger than APCNs and the N_(T) ratio between them is similar with the experimental average capacitance ratio.Furthermore,this work also provides a valuable strategy to prepare the electrode material with high capacitive energy storage ability through the high value-added utilization of WTPO.展开更多
The main chemical composition of pyrolysis carbon black of waste tires is C,O,Cu,Zn and so on.The content of ash and fine powder in pyrolysis carbon black is high,and the 300%elongation stress is high.The difference b...The main chemical composition of pyrolysis carbon black of waste tires is C,O,Cu,Zn and so on.The content of ash and fine powder in pyrolysis carbon black is high,and the 300%elongation stress is high.The difference between pyrolysis carbon black and furnace black N326,which is commonly used in rubber,is obvious compared with chemical property.The pyrolysis carbon black was used to replace furnace black N326 in the transition layer of all steel load Radial tire rubber through experimental study.It was found that the compression heat generation and dynamic loss(Tanδ)of the blend rubber before and after aging were obviously reduced,the elongation at break and resilience increased,while the tensile stress and tear strength decreased by 100%and 300%,but the hardness and tensile strength changed little before and after aging.According to the latest raw material price calculation,15 used tire pyrolysis carbon black instead of furnace carbon black N326 used in all steel Radial tire transition layer rubber application,excluding labor costs,electricity and equipment depreciation,a ton of blended rubber saves about$22.86 in production costs.展开更多
As the quantity of waste tires increases,more pyrolysis carbon black(CBp),a type of low value-added carbon black,is being produced.However,the application of CBp has been limited.Therefore,it is necessary to identify ...As the quantity of waste tires increases,more pyrolysis carbon black(CBp),a type of low value-added carbon black,is being produced.However,the application of CBp has been limited.Therefore,it is necessary to identify and expand applications of CBp.This work focuses on the preparation of activated carbon(AC)from CBp using the physicochemical activation of carbon dioxide(CO_(2))and potassium hydroxide(KOH).Thereafter,AC is applied to the electrode of the electrical double-layer capacitor(EDLC).The AC prepared by CO_(2)/KOH activation exhibited a hierarchical pore structure.The specific surface area increased from 415 to 733 m^(2)g^(−1),and in combination with low ash content of 1.51%,ensured abundant ion diffusion channels and active sites to store charge.The EDLC comprising the AC(AC-2)electrode prepared by excitation of CO_(2)(300 sccm)and KOH had a reasonable gravimetric specific capacitance of 192 F g^(−1)at 0.5 A g^(−1),and exhibited a good rate capability of 73%at 50 A g^(−1)in a three-electrode system.Moreover,the EDLC device comprising the AC-2 electrode delivered excellent cycling stability(capacitance retention of 106%after 10000 cycles at 2 A g^(−1)in a two-electrode system).Furthermore,a symmetric supercapacitor based on an AC electrode that exhibits a supreme energy density of 4.7 Wh kg^(−1)and a maximum power density of 6362.6 W kg^(−1)is demonstrated.展开更多
In this paper,a novel polygeneration system involving plasma gasifier,pyrolysis reactor,gas turbine(GT),supercritical CO_(2)(S-CO_(2))cycle,and organic Rankine cycle(ORC)has been developed.In the proposed scheme,the s...In this paper,a novel polygeneration system involving plasma gasifier,pyrolysis reactor,gas turbine(GT),supercritical CO_(2)(S-CO_(2))cycle,and organic Rankine cycle(ORC)has been developed.In the proposed scheme,the syngas is obtained by the gasification and the pyrolysis is first burned and drives the gas turbine for power generation,and then the resulting hot exhaust gas is applied to heat the working fluid for the supercritical CO_(2)cycle and the working fluid for the bottom organic Rankine cycle.In addition to the electrical output,the pyrolysis subsystem also produces pyrolysis oil and char.Accordingly,energy recovery is achieved while treating waste in a non-hazardous manner.The performance of the new scheme was examined by numerous methods,containing energy analysis,exergy analysis,and economic analysis.It is found that the net total energy output of the polygeneration system could attain 19.89 MW with a net total energy efficiency of 52.77%,and the total exergy efficiency of 50.14%.Besides,the dynamic payback period for the restoration of the proposed project is only 3.31 years,and the relative net present value of 77552640 USD can be achieved during its 20-year lifetime.展开更多
With the rapid growth in the number of passenger cars(PCs)in China over the past decades,more than ten million tons of used tires have already become solid wastes and subsequently caused serious environmental issues.D...With the rapid growth in the number of passenger cars(PCs)in China over the past decades,more than ten million tons of used tires have already become solid wastes and subsequently caused serious environmental issues.Due to the presence of synthetic rubber in PC tires,waste PC tires cannot be disposed through rubber reclaiming technology.Thus,waste PC tires have become one of fastest growing solid wastes in China.First,the current disposal capacity of the pyrolysis method,regarded as a promising technology for the disposal of waste PC tires,is surveyed and compared with other disposal methods mentioned in previous papers.Second,this work establishes a model to predict the total number of waste PC tires in the next five years depending on the rate of PC growth and current waste tire disposal capacity.Moreover,pyrolysis is evaluated on 15 collected waste PC tires selected from the most representative tire brands in the Chinese market.The corresponding results imply that~68.5%of S was into oil and~44.3%N and large amount of heavy metals resided in solid carbon which severely limit further applications.Finally,a new pyrolysis technology is introduced that may represent a solution to the limits in the application of tire disposal methods and relief for the coming waste tire crisis.展开更多
基金supported by the National Key Research and Development Program of China(No.2018YFC1902603).
文摘The conversion of waste tire pyrolysis oil(WTPO)into S-doped porous carbon nanorods(labeled as WPCNs)with hierarchical pore structure is realized by a simple template-directed approach.The specific surface area of as-obtained porous carbon nanorods can reach up to 1448 m^(2) g^(−1) without the addition of any activating agent.As the capacitive electrode,WPCNs possess the extraordinary compatibility to capacitance,different electrolyte systems as well as long-term cycle life even at a commercial-level areal mass loading(10 mg cm^(−2)).Besides,only an extremely small capacitance fluctuation is observed under the extreme circumstance(−40 to 80℃),reflecting the excellent high-and low-temperature performance.The relationship between the pore structure and capacitive behavior is analyzed by comparing WPCNs with mesopores-dominated asphalt-derived porous carbon nanorods(APCNs)and micropores-dominated activated carbon.The molecular dynamics simulation further reveals the ion diffusion and transfer ability of the as-prepared carbon materials under different pore size distribution.The total ion flow(NT)of WPCNs calculated by the simulation is obviously larger than APCNs and the N_(T) ratio between them is similar with the experimental average capacitance ratio.Furthermore,this work also provides a valuable strategy to prepare the electrode material with high capacitive energy storage ability through the high value-added utilization of WTPO.
文摘The main chemical composition of pyrolysis carbon black of waste tires is C,O,Cu,Zn and so on.The content of ash and fine powder in pyrolysis carbon black is high,and the 300%elongation stress is high.The difference between pyrolysis carbon black and furnace black N326,which is commonly used in rubber,is obvious compared with chemical property.The pyrolysis carbon black was used to replace furnace black N326 in the transition layer of all steel load Radial tire rubber through experimental study.It was found that the compression heat generation and dynamic loss(Tanδ)of the blend rubber before and after aging were obviously reduced,the elongation at break and resilience increased,while the tensile stress and tear strength decreased by 100%and 300%,but the hardness and tensile strength changed little before and after aging.According to the latest raw material price calculation,15 used tire pyrolysis carbon black instead of furnace carbon black N326 used in all steel Radial tire transition layer rubber application,excluding labor costs,electricity and equipment depreciation,a ton of blended rubber saves about$22.86 in production costs.
基金supported by the National Natural Science Foundation of China (Grant No. 12175089)the National Key Research and Development Program of China (Grant No. 2019YFC1907900)+4 种基金the Key Research and Development Program of Yunnan Province (Grant No. 202103AF140006)the Applied Basic Research Programs of Yunnan Provincial Science and Technology Department (Grant No. 202001AW070004)the Freely Exploring Fund for Academicians in Yunnan Province (Grant No.202005AA160008)the Key Laboratory of Resource Chemistry,Ministry of Education (Grant No. KLRC_ME2001)the Applied Basic Research Programs of Sichuan Provincial Science and Technology Department(Grant No. 2021yj0007)
文摘As the quantity of waste tires increases,more pyrolysis carbon black(CBp),a type of low value-added carbon black,is being produced.However,the application of CBp has been limited.Therefore,it is necessary to identify and expand applications of CBp.This work focuses on the preparation of activated carbon(AC)from CBp using the physicochemical activation of carbon dioxide(CO_(2))and potassium hydroxide(KOH).Thereafter,AC is applied to the electrode of the electrical double-layer capacitor(EDLC).The AC prepared by CO_(2)/KOH activation exhibited a hierarchical pore structure.The specific surface area increased from 415 to 733 m^(2)g^(−1),and in combination with low ash content of 1.51%,ensured abundant ion diffusion channels and active sites to store charge.The EDLC comprising the AC(AC-2)electrode prepared by excitation of CO_(2)(300 sccm)and KOH had a reasonable gravimetric specific capacitance of 192 F g^(−1)at 0.5 A g^(−1),and exhibited a good rate capability of 73%at 50 A g^(−1)in a three-electrode system.Moreover,the EDLC device comprising the AC-2 electrode delivered excellent cycling stability(capacitance retention of 106%after 10000 cycles at 2 A g^(−1)in a two-electrode system).Furthermore,a symmetric supercapacitor based on an AC electrode that exhibits a supreme energy density of 4.7 Wh kg^(−1)and a maximum power density of 6362.6 W kg^(−1)is demonstrated.
基金supported by the National Natural Science Fund of China(No.52106008)Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.51821004)Science and Technology Planning Project of Guangdong Province(No.2020B1212060048).
文摘In this paper,a novel polygeneration system involving plasma gasifier,pyrolysis reactor,gas turbine(GT),supercritical CO_(2)(S-CO_(2))cycle,and organic Rankine cycle(ORC)has been developed.In the proposed scheme,the syngas is obtained by the gasification and the pyrolysis is first burned and drives the gas turbine for power generation,and then the resulting hot exhaust gas is applied to heat the working fluid for the supercritical CO_(2)cycle and the working fluid for the bottom organic Rankine cycle.In addition to the electrical output,the pyrolysis subsystem also produces pyrolysis oil and char.Accordingly,energy recovery is achieved while treating waste in a non-hazardous manner.The performance of the new scheme was examined by numerous methods,containing energy analysis,exergy analysis,and economic analysis.It is found that the net total energy output of the polygeneration system could attain 19.89 MW with a net total energy efficiency of 52.77%,and the total exergy efficiency of 50.14%.Besides,the dynamic payback period for the restoration of the proposed project is only 3.31 years,and the relative net present value of 77552640 USD can be achieved during its 20-year lifetime.
基金support of the National Key R&D Program of China[Grant No.2018YFC1902601].
文摘With the rapid growth in the number of passenger cars(PCs)in China over the past decades,more than ten million tons of used tires have already become solid wastes and subsequently caused serious environmental issues.Due to the presence of synthetic rubber in PC tires,waste PC tires cannot be disposed through rubber reclaiming technology.Thus,waste PC tires have become one of fastest growing solid wastes in China.First,the current disposal capacity of the pyrolysis method,regarded as a promising technology for the disposal of waste PC tires,is surveyed and compared with other disposal methods mentioned in previous papers.Second,this work establishes a model to predict the total number of waste PC tires in the next five years depending on the rate of PC growth and current waste tire disposal capacity.Moreover,pyrolysis is evaluated on 15 collected waste PC tires selected from the most representative tire brands in the Chinese market.The corresponding results imply that~68.5%of S was into oil and~44.3%N and large amount of heavy metals resided in solid carbon which severely limit further applications.Finally,a new pyrolysis technology is introduced that may represent a solution to the limits in the application of tire disposal methods and relief for the coming waste tire crisis.