Electronic scrap, especially wasted printed circuit boards (PCBs), is regarded as an environmental challenge. At present, the physical separation is thought to be the environmental friendly and economical method of tr...Electronic scrap, especially wasted printed circuit boards (PCBs), is regarded as an environmental challenge. At present, the physical separation is thought to be the environmental friendly and economical method of treating and reutilizing electronic waste. An effective liberation of metals from non metallic components is a crucial step towards mechanical separation and recycling of wasted PCBs. In this paper, the selective shredding theory and mechanics characteristics of wasted PCBs were analyzed, and the shredded experiments of wasted PCBs by hammer mill were investigated. The result shows that the selective shredding exists in the wasted PCBs shredded process by hammer mill. The shredding velocity of non metallic components is far greater than that of metals in the wasted PCBs shredding, which makes the metals concentrate in the coarser fraction. And the impact force of hammer mill is superior to metal liberation from non metallic components, a satisfied metal liberation degree can be achieved in the wasted PCBs shredding by hammer mill.展开更多
The method for the recycling of copper from copper chloride solution was developed. This process consists of extraction of copper, purification and particle size reduction. In the first step, reductive metal scraps we...The method for the recycling of copper from copper chloride solution was developed. This process consists of extraction of copper, purification and particle size reduction. In the first step, reductive metal scraps were added to acidic copper chloride waste enchants produced in the PCB industry to obtain copper powder. Composition analysis showed that this powder contained impurities such as Fe, Ni, and water. So, drying and purification were carried out by using microwave and a centrifugal separator. Thereby the copper powder had a purity of higher than 99% and spherical form in morphology. The copper powder size was decreased by ball milling.展开更多
The recycling method and principle of SnO2 from the tin slag of printed circuit boards(PCB) waste were investigated. In this study, pure SnO2 powders were obtained through a multi-step process including ball-milling...The recycling method and principle of SnO2 from the tin slag of printed circuit boards(PCB) waste were investigated. In this study, pure SnO2 powders were obtained through a multi-step process including ball-milling, roasting, dissolving, precipitating, and pickling. The total recovery rate of tin can be up to 91 %. The SnO2 powders obtained is the single phase, and the content of SnO2 is up to 99.9 %. However, the SnO2 particles are easier to agglomerate during the precipitation process. The agglomerate SnO2 particles are about 7.778 lm in mean particle size(D50). This preparation method presents a viable alternative for the tin slag recycling. The tin is not only recycled, but also reused directly to prepare pure SnO2 powders.展开更多
Currently, increasing amounts of end-of-life (EoL) electronic products are being generated due to their reduced life spans and the unavailability of suitable recycling technologies. In particular, waste printed circ...Currently, increasing amounts of end-of-life (EoL) electronic products are being generated due to their reduced life spans and the unavailability of suitable recycling technologies. In particular, waste printed circuit boards (PCBs) have become of global concern with regard to environmental issues because of their high metal and toxic material contents, which are pollutants. There are many environmental threats owed to the disposal of electronic waste; off-gasses, such as dioxins, furans, polybrominated organic pollutants, and polycyclic aromatic hydrocarbons, can be generated during thermal treatments. which can cause serious health problems if effective off=gas cleaning systems are not developed and improved. Moreover, heavy metals will dissolve, and release into the ground water from the landfill sites. Such waste PCBs contain precious metals which are of monetary value. Therefore, it is beneficial to recover the metal content and protect the environment from pollution. Hydrometallurgy is a successful technique used worldwide for the recovery of precious metals (especially gold and silver) from ores, concentrates, and waste materials. It is generally preferred over other methods because it can offer high recovery rates at a relatively low cost. This article reviews the recent trends and developments with regard to the recycling of precious metals from waste PCBs through hydrometallurgical techniques, such as leaching and recovery.展开更多
文摘Electronic scrap, especially wasted printed circuit boards (PCBs), is regarded as an environmental challenge. At present, the physical separation is thought to be the environmental friendly and economical method of treating and reutilizing electronic waste. An effective liberation of metals from non metallic components is a crucial step towards mechanical separation and recycling of wasted PCBs. In this paper, the selective shredding theory and mechanics characteristics of wasted PCBs were analyzed, and the shredded experiments of wasted PCBs by hammer mill were investigated. The result shows that the selective shredding exists in the wasted PCBs shredded process by hammer mill. The shredding velocity of non metallic components is far greater than that of metals in the wasted PCBs shredding, which makes the metals concentrate in the coarser fraction. And the impact force of hammer mill is superior to metal liberation from non metallic components, a satisfied metal liberation degree can be achieved in the wasted PCBs shredding by hammer mill.
文摘The method for the recycling of copper from copper chloride solution was developed. This process consists of extraction of copper, purification and particle size reduction. In the first step, reductive metal scraps were added to acidic copper chloride waste enchants produced in the PCB industry to obtain copper powder. Composition analysis showed that this powder contained impurities such as Fe, Ni, and water. So, drying and purification were carried out by using microwave and a centrifugal separator. Thereby the copper powder had a purity of higher than 99% and spherical form in morphology. The copper powder size was decreased by ball milling.
基金financially supported by the Beijing Nova Program (No. Z141103001814006)the National Key Technology R&D Program (Nos. 2012BAC12B05 and 2012BAC02B01)+1 种基金the National Natural Science Foundation of China (Nos. 51174247 and U1360202)the National High-Tech Research and the Development Program of China (No. 2012AA063202)
文摘The recycling method and principle of SnO2 from the tin slag of printed circuit boards(PCB) waste were investigated. In this study, pure SnO2 powders were obtained through a multi-step process including ball-milling, roasting, dissolving, precipitating, and pickling. The total recovery rate of tin can be up to 91 %. The SnO2 powders obtained is the single phase, and the content of SnO2 is up to 99.9 %. However, the SnO2 particles are easier to agglomerate during the precipitation process. The agglomerate SnO2 particles are about 7.778 lm in mean particle size(D50). This preparation method presents a viable alternative for the tin slag recycling. The tin is not only recycled, but also reused directly to prepare pure SnO2 powders.
基金This research was financially supported, in part, by the National Natural Science Foundation of China (No. 21407105), Shanghai Municipal Natural Science Foundation (No. 14ZR1416700), SPU Graduate project fund (A O1GY17F022 ), SPU Key Disciplines Subject (XXKZD1602 ) and Shanghai Cooperative Centre for WEEE Recycling (ZF1224).
文摘Currently, increasing amounts of end-of-life (EoL) electronic products are being generated due to their reduced life spans and the unavailability of suitable recycling technologies. In particular, waste printed circuit boards (PCBs) have become of global concern with regard to environmental issues because of their high metal and toxic material contents, which are pollutants. There are many environmental threats owed to the disposal of electronic waste; off-gasses, such as dioxins, furans, polybrominated organic pollutants, and polycyclic aromatic hydrocarbons, can be generated during thermal treatments. which can cause serious health problems if effective off=gas cleaning systems are not developed and improved. Moreover, heavy metals will dissolve, and release into the ground water from the landfill sites. Such waste PCBs contain precious metals which are of monetary value. Therefore, it is beneficial to recover the metal content and protect the environment from pollution. Hydrometallurgy is a successful technique used worldwide for the recovery of precious metals (especially gold and silver) from ores, concentrates, and waste materials. It is generally preferred over other methods because it can offer high recovery rates at a relatively low cost. This article reviews the recent trends and developments with regard to the recycling of precious metals from waste PCBs through hydrometallurgical techniques, such as leaching and recovery.