期刊文献+
共找到2,156篇文章
< 1 2 108 >
每页显示 20 50 100
Optimizing Household Wastes (Rice, Vegetables, and Fruit) as an Environmentally Friendly Electricity Generator
1
作者 Deni Ainur Rokhim Isma Yanti Vitarisma +2 位作者 Sumari Sumari Yudhi Utomo Muhammad Roy Asrori 《Journal of Renewable Materials》 EI CAS 2024年第2期275-284,共10页
The high consumption of electricity and issues related to fossil energy have triggered an increase in energy prices and the scarcity of fossil resources.Consequently,many researchers are seeking alternative energy sou... The high consumption of electricity and issues related to fossil energy have triggered an increase in energy prices and the scarcity of fossil resources.Consequently,many researchers are seeking alternative energy sources.One potential technology,the Microbial Fuel Cell(MFC)based on rice,vegetable,and fruit wastes,can convert chemical energy into electrical energy.This study aims to determine the potency of rice,vegetable,and fruit waste assisted by Cu/Mg electrodes as a generator of electricity.The method used was a laboratory experiment,including the following steps:electrode preparation,waste sample preparation,incubation of the waste samples,construction of a reactor using rice,vegetable,and fruit waste as a source of electricity,and testing.The tests included measuring electrical conductivity,electric current,voltage,current density,and power density.Based on the test results,the maximum current and voltage values for the fruit waste samples were 5.53 V and 11.5 mA,respectively,with a current density of 2.300 mA/cm^(2) and a power density of 12.719 mW/cm^(2).The results indicate the potential for a future development.The next step in development involves determining the optimum conditions for utilizing of rice,vegetable,and fruit waste.The results of the electrical conductivity test on rice,vegetable,and fruit waste samples were 1.51,2.88,and 3.98 mS,respectively,with the highest electrical conductivity value found in the fruit waste sample. 展开更多
关键词 Electrical energy fruit waste rice waste vegetable waste
下载PDF
Bird’s-eye view of recycled solid wastes in road engineering
2
作者 Zhuangzhuang Liu Tengteng Feng +5 位作者 Xingyi Zhu Jie Gao Kui Hu Meng Guo Fan Gu Feng Li 《Journal of Road Engineering》 2024年第2期93-150,共58页
Recent trends in road engineering have explored the potential of incorporating recycled solid wastes into infrastructures that including pavements,bridges,tunnels,and accessory structures.The utilization of solid wast... Recent trends in road engineering have explored the potential of incorporating recycled solid wastes into infrastructures that including pavements,bridges,tunnels,and accessory structures.The utilization of solid wastes is expected to offer sustainable solutions to waste recycling while enhancing the performance of roads.This review provides an extensive analysis of the recycling of three main types of solid wastes for road engineering purposes:industrial solid waste,infrastructure solid waste,and municipal life solid waste.Industrial solid wastes suitable for road engineering generally include coal gangue,fly ash,blast furnace slag,silica fume,and steel slag,etc.Infrastructure solid wastes recycled in road engineering primarily consist of construction&demolition waste,reclaimed asphalt pavements,and recycled cement concrete.Furthermore,recent exploration has extended to the utilization of municipal life solid wastes,such as incinerated bottom ash,glass waste,electronics waste,plastic waste,and rubber waste in road engineering applications.These recycled solid wastes are categorized into solid waste aggregates,solid waste cements,and solid waste fillers,each playing distinct roles in road infrastructure.Roles of solid waste acting aggregates,cements,and fillers in road infrastructures were fully investigated,including their pozzolanic properties,integration effects to virgin materials,modification or enhancement solutions,engineering performances.Utilization of these materials not only addresses the challenge of waste management but also offers environmental benefits aiming carbon neutral and contributes to sustainable infrastructure development.However,challenges such as variability in material properties,environmental impact mitigation,secondary pollution to environment by leaching,and concerns regarding long-term performance need to be further addressed.Despite these challenges,the recycled solid wastes hold immense potential in revolutionizing road construction practices and fostering environmental stewardship.This review delves into a bird’seye view of the utilization of recycled solid wastes in road engineering,highlighting advances,benefits,challenges,and future prospects. 展开更多
关键词 Road engineering Industrial solid waste Infrastructure solid waste Municipal life waste Recycled materials
下载PDF
Biotransformation of Shrimp Wastes by Bacillus subtilis OKF04 and Evaluation of Growth Promoting Effect in Crop Planting
3
作者 HU Zelin PAN Zhaoyang +3 位作者 ZHAO Tianyu WANG Yongzhen SUN Jianan MAO Xiangzhao 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第5期1383-1392,共10页
In this study,we proposed a reliable and sustainable technique for the clean utilization of shrimp wastes,which can yield a solid inoculant of Bacillus subtilis OKF04 containing micronutrients at low cost without the ... In this study,we proposed a reliable and sustainable technique for the clean utilization of shrimp wastes,which can yield a solid inoculant of Bacillus subtilis OKF04 containing micronutrients at low cost without the risk of contamination.Study of the culture conditions revealed that the head of shrimp Litopenaus vannamei and the wheat bran acted as suitable substrates for the growth of B.subtilis OKF04.With 60%initial moisture content,30℃culture temperature,and 5%inoculation amount,followed by 48 hours of fermentation and 0.5%soluble starch added during the drying process(50℃for 6h),a solid B.subtilis OKF04 inoculant with a spore amount of 2.4×10^(10)CFU g^(-1)and a high amino acid content was obtained.The solid B.subtilis OKF04 inoculant was applied to cultivate pakchoi under pot experiment.As the result,of adding to,the size of stems and leaves,nutritional composition,and physiological activity of pakchoi were significantly(P<0.05)enhanced by solid B.subtilis OKF04 inoculant.B.subtilis OKF04 also significantly(P<0.05)increased the soil’s nutrient content and improved its microbial composition.Furthermore,pakchoi cultivated with a low dose of solid B.subtilis OKF04 inoculant(0.05 g kg^(-1)soil)resulted in the best results.This study provides a new method for the preparation of microbial inoculants with solid waste shrimp heads. 展开更多
关键词 shrimp wastes Bacillus subtilis OKF04 INOCULANT solid state fermentation crop growth promotion
下载PDF
Biofuel Recovery from Plantain and Banana Plant Wastes:Integration of Biochemical and Thermochemical Approach
4
作者 Abdulmoseen Segun Giwa Mingqiang Sheng +5 位作者 Ndungutse Jean Maurice Xinxin Liu Zelong Wang Fengmin Chang Bo Huang Kaijun Wang 《Journal of Renewable Materials》 SCIE EI 2023年第6期2593-2629,共37页
Globally,fossil fuel dependence has created several environmental challenges and climate change.Hence,creating other alternative renewable and ecologically friendly bio-energy sources is necessary.Lignocellulosic biom... Globally,fossil fuel dependence has created several environmental challenges and climate change.Hence,creating other alternative renewable and ecologically friendly bio-energy sources is necessary.Lignocellulosic biomass has gained significant attention recently as a renewable material for biofuel production.The large amounts of plantain and banana plant parts wasted after harvesting,as well as the peels generated daily by the fruit market and industries,demonstrate the potential of bioenergy resources.This review briefly assesses plantain and banana plant biomass(PBB)generated in the developing,developed,and underdeveloped countries,the consumable parts,and feasible products yield.It emphasized the advantages and disadvantages of the commonly adopted treatment technologies of composting,incineration,and landfilling.Further,the utilization of PBB as catalysts in biodiesel synthesis was briefly highlighted.To optimize recovery of biofuel,different integration routes of pyrolysis,anaerobic digestion,fermentation,hydrothermal carbonization,hydrothermal liquefaction,and hydrothermal gasification for the valorization of the PBB were proposed.The complex compounds present in the PBB(hemicellulose,cellulose,and lignin)can be converted into valuable bio-products such as methane gas and bio-ethanol for bioenergy,and nutrients to promote bioactive ingredients.The investigation of the viability and innovation potential of the integrated routes’technology is necessary to improve the circular bio-economy and the recovery of biofuels from biomass waste,particularly PBB. 展开更多
关键词 Bio-chemical BIO-FUEL INTEGRATION plantain and banana waste:renewable materials
下载PDF
Volumetric lattice Boltzmann method for pore-scale mass diffusionadvection process in geopolymer porous structures 被引量:1
5
作者 Xiaoyu Zhang Zirui Mao +6 位作者 Floyd W.Hilty Yulan Li Agnes Grandjean Robert Montgomery Hans-Conrad zur Loye Huidan Yu Shenyang Hu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2126-2136,共11页
Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti... Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications. 展开更多
关键词 Volumetric lattice Boltzmann method(VLBM) Phase field method(PFM) Pore-scale diffusion-advection Nuclear waste treatment Porous media flow Graphics processing unit(GPU) parallelization
下载PDF
Bearing capacity of circular footings on multi-layered sand-waste tire shreds reinforced with geogrids
6
作者 Mahmoud Ghazavi Ehsan Khosroshahi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1085-1094,共10页
The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires ar... The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires are used in geotechnical applications.To determine the viability of this approach,laboratoryscale tests were conducted to investigate load-bearing capacity of circular footings on sand-tire shred(STS)mixtures with shredded waste tire contents of 5%e15%by weight and three different widths of shreds.The investigation focused on analyzing the thickness of layers composed of STS mixtures,the soil cap,and the impact of geogrids on bearing capacity.The results indicate that a specific mixture of sand and tire shreds provides the highest footing-bearing capacity.In addition,the optimal shred content and size were found to be 10%by weight and 2 cm×10 cm,respectively.Furthermore,for a given tire shred width,a particular length provides the largest bearing capacity.The results agree well with that of previous research conducted by the first author and his colleagues in direct shear and California bearing ratio(CBR)tests.The primary finding of this research is that the use of two-layered STS mixtures reinforced by geogrids significantly enhances the bearing capacity. 展开更多
关键词 GEOGRID SAND Waste tire shred Bearing capacity Waste tire shred optimization Tire shred aspect ratio
下载PDF
Facile molybdenum and aluminum recovery from spent hydrogenation catalyst
7
作者 Zhenhui Lv Jianan Li +3 位作者 Dong Xue Tao Yang Gang Wang Chong Peng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期72-78,共7页
Industrial catalyst waste has emerged as a hazardous pollutant that requires safe and proper disposal after the unloading process.Finding a valuable and sustainable strategy for its treatment is a significant challeng... Industrial catalyst waste has emerged as a hazardous pollutant that requires safe and proper disposal after the unloading process.Finding a valuable and sustainable strategy for its treatment is a significant challenge compared to traditional methods.In this study,we present a facile method for the recovery of molybdenum and aluminum contents from spent Mo-Ni/Al_(2)O_(3) hydrogenation catalysts through crystallization separation and coprecipitation.Furthermore,the recovered molybdenum and aluminum are utilized as active metals and carriers for the preparation of new catalysts.Their properties were thoroughly analyzed and investigated using various characterization techniques.The hydrogenation activity of these newly prepared catalysts was evaluated on a fixed-bed small-scale device and compared with a reference catalyst synthesized from commercial raw reagents.Finally,the hydrogenation activity of the catalysts was further assessed by using the entire distillate oil of coal liquefaction as the raw oil,specifically focusing on denitrogenation and aromatic saturation.This work not only offers an effective solution for recycling catalysts but also promotes sustainable development. 展开更多
关键词 Waste treatment ALUMINA HYDROGENATION Catalyst CRYSTALLIZATION Precipitation
下载PDF
Copper slag assisted coke reduction of phosphogypsum for sulphur dioxide preparation
8
作者 Dong Ma Qinhui Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期43-53,共11页
The reduction of phosphogypsum(PG)to lime slag and SO_(2)using coke can effectively alleviate the environmental problems caused by PG.However,the PG decomposition temperature remains high and the product yield remains... The reduction of phosphogypsum(PG)to lime slag and SO_(2)using coke can effectively alleviate the environmental problems caused by PG.However,the PG decomposition temperature remains high and the product yield remains poor.By adding additives,the decomposition temperature can be further reduced and PG decomposition rate and product yield can be improved.However,the use of current additives such as Fe_(2)O_(3)and SiO_(2)brings the problem of increasing economic cost.Therefore,it is proposed to use solid waste copper slag(CS)as a new additive to reduce PG to prepare SO2,which can reduce the cost and meet the environmental benefits at the same time.The effects of proportion,temperature and thermostatic time on PG decomposition are investigated by experimental and kinetic analysis combined with FactSage thermodynamic calculations to optimize the roasting conditions.Finally,the reaction mechanism is proposed.It is found that adding CS to the coke and PG system can increase the rate of PG decomposition and SO_(2)yield while lowering the PG decomposition temperature.For example,when the CS/PG mass ratio increases from 0 to 1,PG decomposition rate increases from 83.38%to 99.35%,SO_(2)yield increases from 78.62%to 96.81%,and PG decomposition temperature decreases from 992.4℃to 949.6℃.The optimal reaction parameters are CS/PG mass ratio of 1,Coke/PG mass ratio of 0.06 at 1100℃for 20 min with 99.35%PG decomposition rate and 96.81%SO_(2) yield.The process proceeds according to the following reactions:2CaSO_(4)+ 0.7C + 0.8Fe_(2)SiO_(4)→0.8Ca_(2)SiO_(4)+ 0.2Ca_(2)Fe_(2)O_(5)+ 0.4Fe_(3)O_(4)+2SO_(2)+ 0.7CO_(2)Finally,a process for decomposing PG with coke and CS is proposed. 展开更多
关键词 PHOSPHOGYPSUM Sulfur dioxide Copper slag FLUIDIZED-BED REDUCTION Waste treatment
下载PDF
Study on synergistic leaching of potassium and phosphorus from potassium feldspar and solid waste phosphogypsum via coupling reactions
9
作者 Chao Li Shizhao Wang +3 位作者 Yunshan Wang Xuebin An Gang Yang Yong Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期117-129,共13页
To achieve the resource utilization of solid waste phosphogypsum(PG)and tackle the problem of utilizing potassium feldspar(PF),a coupled synergistic process between PG and PF is proposed in this paper.The study invest... To achieve the resource utilization of solid waste phosphogypsum(PG)and tackle the problem of utilizing potassium feldspar(PF),a coupled synergistic process between PG and PF is proposed in this paper.The study investigates the features of P and F in PG,and explores the decomposition of PF using hydrofluoric acid(HF)in the sulfuric acid system for K leaching and leaching of P and F in PG.The impact factors such as sulfuric acid concentration,reaction temperature,reaction time,material ratio(PG/PF),liquid–solid ratio,PF particle size,and PF calcination temperature on the leaching of P and K is systematically investigated in this paper.The results show that under optimal conditions,the leaching rate of K and P reach more than 93%and 96%,respectively.Kinetics study using shrinking core model(SCM)indicates two significant stages with internal diffusion predominantly controlling the leaching of K.The apparent activation energies of these two stages are 11.92 kJ·mol^(-1)and 11.55 kJ·mol^(-1),respectively. 展开更多
关键词 PHOSPHOGYPSUM Potassium feldspar Coupling reaction LEACHING Waste treatment Kinetics
下载PDF
Synthesis of waterborne polyurethane-humic acid cross-linked biomass porous materials for the adsorption of methylene blue
10
作者 Shanghong Ma Jianbo Qu +4 位作者 Haitao Zhang Xiubin Cui Peng Ye Qingfei Hu Mingzhen Chao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期27-38,共12页
A series of adsorbent materials(WPU-HAx-y)with a three-dimensional porous structure,green sustainability,and excellent performance were prepared and evaluated for the removal of methylene blue using nontoxic and envir... A series of adsorbent materials(WPU-HAx-y)with a three-dimensional porous structure,green sustainability,and excellent performance were prepared and evaluated for the removal of methylene blue using nontoxic and environmentally friendly waterborne polyurethane as the matrix material and humic acid,a biomass material,as the functional material.The newly synthesized adsorbents were characterized by infrared spectroscopy,scanning electron microscopy,specific surface area,and thermogravimetric.The effects of contact time(0-8 h),starting concentration(10-100 mg·L^(-1)),pH(3-11),solution temperature(30-60℃),and coexisting ions(Ca2+,Na+,K+,Mg2+)on the performance were investigated.Pseudo-first-order,pseudo-second-order,elovich,and intra-particle diffusion models were used to analyze the adsorption kinetics;the Langmuir,Freundlich,Temkin,and Dubin-Radushkovich adsorption isotherms were evaluated;and the adsorption behavior of the adsorbent materials was found to be more appropriate for the pseudo-second-order model for chemical pollutant removal than the Langmuir model,which depends on monolayer adsorption.WPU-HA2-3 stood out with a maximum adsorption capacity of 813.0081 mg·g^(-1) fitted to the pseudo-second-order and 309.2832 mg·g^(-1) fitted to the Langmuir model,showing superior adsorption performance and regenerability. 展开更多
关键词 Porous media BIOENERGY Sustainability Waste water
下载PDF
预处理技术--家庭生物废弃物处理过程中的微塑料制造者
11
作者 Tian Hu Fan Lü +4 位作者 Zhan Yang Zhenchao Shi Yicheng Yang Hua Zhang Pinjing He 《Engineering》 SCIE EI CAS CSCD 2024年第1期116-126,共11页
Mechanical pretreatment is an indispensable process in biological treatment plants that remove plastics and other impurities from household biogenic waste(HBW).However,the imperfect separation of plastics in these pre... Mechanical pretreatment is an indispensable process in biological treatment plants that remove plastics and other impurities from household biogenic waste(HBW).However,the imperfect separation of plastics in these pretreatment methods has raised concerns that they pose a secondary formation risk for microplastics(MPs).To validate this presumption,herein,quantities and properties of plastic debris and MPs larger than 50 μm were examined in the full chain of three different pretreatment methods in six plants.These facilities received HBW with or without prior depackaging at the source.The key points in the secondary formation of MPs were identified.Moreover,flux estimates of MPs were released,and an analysis of MPs sources was provided to develop an overview of their fate in HBW pretreatment.Pretreated output can contain a maximum of(1673±279) to(3198±263) MP particles per kilogram of wet weight(particles·kg^(-1)ww) for those undepackaged at source,and secondary MPs formation is primarily attributed to biomass crushers,biohydrolysis reactors,and rough shredders.Comparatively,HBW depackaged at the source can greatly reduce MPs by 8%-72%,regardless of pretreatment processes.Before pretreatment,4.6-205.6 million MP particles were present in 100 tonnes of HBW.MPs are produced at a rate of 741.11-33124.22 billion MP particles annually in anaerobic digester feedstock(ADF).This study demonstrated that HBW pretreatment is a competitive source of MPs and emphasized the importance of implementing municipal solid waste segregation at the source.Furthermore,depackaging biogenic waste at the source is recommended to substantially alleviate the negative effect of pretreatment on MPs formation. 展开更多
关键词 Microplastics Plastic debris Household biogenic waste Depackage PRETREATMENT
下载PDF
Utilization of recycled solid waste as ecological reclamation materials based on plant growth experiments and soil quality analysis
12
作者 QIN Xiaochun NI Anchen +2 位作者 YANG Dongxiao XING Wenhu LIU Shiliang 《Journal of Mountain Science》 SCIE CSCD 2024年第3期820-834,共15页
During the highway construction,a large number of spoil areas will be generated while a large amount of waste slag and soil could not be rationally utilized.Besides,the vegetation recovery is slow in the spoil areas d... During the highway construction,a large number of spoil areas will be generated while a large amount of waste slag and soil could not be rationally utilized.Besides,the vegetation recovery is slow in the spoil areas due to the soil depletion.Aiming at recycling the solid waste,the sieved engineering waste slag with local red clay and corn straw biochar was supplied to solve the problem of insufficient nutrients in engineering waste slag and soil.In addition,planting experiments of alfalfa(Medicago sativa L.)and Amorpha fruticosa L.combined with physical and chemical experiments were carried out to prove the feasibility of the novel improved substrate for the reclamation of spoil areas.The results show that the substrate's improvement effect is mainly affected by the soil to slag ratio and the biochar content.The improvement effect of soil matrix in highway spoil area decreases with the increase of the waste slag content,especially when the soil-slag ratio is less than 3,and the promotion of plants is limited.On the contrary,the improvement effect is proportional to the biochar content(3%-8%).But it is noted that the Cu and Pb in the soil will exceed the clean limit corresponding to the Nemero soil pollution index level when the biochar content is 8%.Therefore,it is recommended that the soil-slag ratio should be≥3,and the biochar content should reach 3%-5%.This research provides experimental basis and technical support for utilizing solid waste resources in the reclamation of highway spoil areas. 展开更多
关键词 HIGHWAY Spoil area Waste slag Modified soil Ecological reclamation
下载PDF
Synergetic Bioproduction of Short-Chain Fatty Acids from Waste Activated Sludge Intensified by the Combined Use of Potassium Ferrate and Biosurfactants
13
作者 CHEN Yanyan YAO Shuo +2 位作者 ZHANG Dahai LI Xianguo FENG Lijuan 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期695-709,共15页
The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were expl... The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were explored in this work.Experimental results showed that 0.2 g PF(g TSS)^(-1)(total suspended solid)combined with 0.02 g TS(g TSS)^(-1) could further improve SCFAs’production,and the maximum SCFAs content reached 2008.7 mg COD L^(-1),which is 1.2 and 4.5 times higher than those with PF and TS individually added,respectively,and 5.3 times higher than that of blank WAS on Day 12.In the model substrates experiments,the degradation rates of bovine serum albumin and dextran with combination of PF and TS were 41.3%±0.1% and 48.5%±0.06%,respectively,on Day 3,which are lower than those in blank WAS(with degradation rates of 72.3%±0.5%and 90.3%±0.3%).It was revealed that the oxidative effect of PF and the solubilization of TS caused more organic matters to be dissolved out from WAS,providing a large number of biodegradable substances for subsequent SCFAs production.While WAS pretreated with the combination of PF and TS,the relative abundances of Firmicutes increased from 6.4%(blank)to 38.6%,and that of Proteobacteria decreased from 41.8%(blank)to 21.8%.The combination of PF and TS promoted the hydrolysis process of WAS by enriching Firmicutes,and then increased acetic acid production by inhibiting Proteobacteria that consumed SCFAs.Meanwhile,at the genus level,acidogenesis bacteria(e.g.,Proteiniclasticum and Petrimonas)were enriched whereas SCFAs consuming bacteria(e.g.,Dokdonella)were inhibited. 展开更多
关键词 waste activated sludge anaerobic fermentation potassium ferrate BIOSURFACTANT PRETREATMENT
下载PDF
Efficient and rapid capture of uranium(Ⅵ) in wastewater via multiamine modified β-cyclodextrin porous polymer
14
作者 Xing Zhong Yubin Tan +6 位作者 Siyuan Wu Caixia Hu Kai Guo Yongchuan Wu Neng Yu Mingyang Ma Ying Dai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期144-155,共12页
It is quite important to ensure the safety and sustainable development of nuclear energy for the treatment of radioactive wastewater. To treat radioactive wastewater efficiently and rapidly, two multi-amine β-cyclode... It is quite important to ensure the safety and sustainable development of nuclear energy for the treatment of radioactive wastewater. To treat radioactive wastewater efficiently and rapidly, two multi-amine β-cyclodextrin polymers(diethylenetriamine β-cyclodextrin polymer(DETA-TFCDP) and triethylenetetramine β-cyclodextrin polymer(TETA-TFCDP)) were prepared and applied to capture uranium. Results exhibited that DETA-TFCDP and TETA-TFCDP displayed the advantages of high adsorption amounts(612.2and 628.2 mg·g-1, respectively) and rapid adsorption rates, which can reach(88 ± 1)% of their equilibrium adsorption amounts in 10 min. Moreover, the adsorbent processes of DETA-TFCDP and TETATFCDP on uranium(Ⅵ) followed the Langmuir model and pseudo-second-order model, stating they were mainly chemisorption and self-endothermic. Besides, TETA-TFCDP also showed excellent selectivity in the presence of seven competing cations and could be effectively reused five times via Na2CO3as the desorption reagent. Meanwhile, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy illustrated that the enriched multi-amine groups and oxygen-containing functional groups on the surface of TETA-TFCDP were the main active sites for capturing uranium(Ⅵ). Hence, multi-amine β-cyclodextrin polymers are a highly efficient, rapid, and promising adsorbent for capturing uranium(Ⅵ)from radioactive wastewater. 展开更多
关键词 Adsorption Waste water Pollution Uranium(VI) b-Cyclodextrin
下载PDF
Effects of iron oxide on crystallization behavior and spatial distribution of spinel in stainless steel slag
15
作者 Zihang Yan Qing Zhao +3 位作者 Chengzhi Han Xiaohui Mei Chengjun Liu Maofa Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期292-300,共9页
Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimen... Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%. 展开更多
关键词 stainless steel slag SPINEL CHROMIUM waste remediation ferrous oxide
下载PDF
Modelling the water diversion of a sustainable cover system under humid climates
16
作者 Haowen Guo Charles Wang Wai Ng +2 位作者 Qi Zhang Chuanxiang Qu Liwen Hu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2429-2440,共12页
Extreme rainfall significantly threatens the safety of the landfill cover system,especially under humid climates.This study aims to provide design recommendations for a sustainable landfill cover system consisting of ... Extreme rainfall significantly threatens the safety of the landfill cover system,especially under humid climates.This study aims to provide design recommendations for a sustainable landfill cover system consisting of a low-permeability soil layer underlying a two-layer capillary barrier for humid climates.First,the numerical back-analysis was conducted for verification against a series of flume model tests.Then,a parametric study was performed to investigate the effects of inclination angle,particle size and layer thickness on the lateral diversion length(DL)of the three-layer cover system under the 100-year return period rainfall of humid climates.The results show that the water lateral DL of the cover system can be greatly enhanced by increasing the inclination angle from 3to 18.Moreover,the bottom layer of the cover system with a coarser d10 was more susceptible to the impact of the heavy rainfall,while this can be alleviated by increasing the thickness of the bottom layer.A dimensionless number,defined as the ratio of thickness and d10 of the bottom layer,is proposed for designing lateral diversion of the three-layer cover system under humid climates.To preserve the maximum DL,it is suggested that the proposed dimensionless number should be larger than 95 and 110 for the design of rainfall events with 50-year and 100-year return periods for humid climates,respectively. 展开更多
关键词 Unsaturated soil RECYCLING Construction waste Three-layer landfill cover Water infiltration
下载PDF
Preparation of high-purity fluorite and nanoscale calcium carbonate from low-grade fluorite
17
作者 Qianqian Lu Haisheng Han +5 位作者 Wenjuan Sun Xingfei Zhang Weiwei Wang Bilan Zhang Wensheng Chen Qin Zou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1198-1207,共10页
Flotation separation of calcite from fluorite is a challenge on low-grade fluorite flotation that limits the recovery and purity of fluorite concentrate.A new acid leaching–flotation process for fluorite is proposed ... Flotation separation of calcite from fluorite is a challenge on low-grade fluorite flotation that limits the recovery and purity of fluorite concentrate.A new acid leaching–flotation process for fluorite is proposed in this work.This innovative process raised the fluor-ite’s grade to 97.26wt%while producing nanoscale calcium carbonate from its leachate,which contained plenty of calcium ions.On the production of nanoscale calcium carbonate,the impacts of concentration,temperature,and titration rate were examined.By modifying the process conditions and utilizing crystal conditioning agents,calcite-type and amorphous calcium carbonates with corresponding particle sizes of 1.823 and 1.511μm were produced.The influence of the impurity ions Mn^(2+),Mg^(2+),and Fe^(3+)was demonstrated to reduce the particle size of nanoscale calcium carbonate and make crystal shape easier to manage in the fluorite leach solution system compared with the calcium chloride solution.The combination of the acid leaching–flotation process and the nanoscale calcium carbonate preparation method improved the grade of fluorite while recovering calcite resources,thus presenting a novel idea for the effective and clean usage of low-quality fluorite resources with embedded microfine particles. 展开更多
关键词 FLUORITE CALCITE nanoscale calcium carbonate waste recovery
下载PDF
Folic Acid-Functionalized Nanocrystalline Cellulose as a Renewable and Biocompatible Nanomaterial for Cancer-Targeting Nanoparticles
18
作者 Thean Heng Tan Najihah Mohd Hashim +2 位作者 Wageeh Abdulhadi Yehya Dabdawb Mochamad Zakki Fahmi Hwei Voon Lee 《Journal of Renewable Materials》 EI CAS 2024年第1期29-43,共15页
The study focuses on the development of biocompatible and stable FA-functionalized nanocrystalline cellulose(NCC)as a potential drug delivery system for targeting folate receptor-positive cancer cells.The FA-functiona... The study focuses on the development of biocompatible and stable FA-functionalized nanocrystalline cellulose(NCC)as a potential drug delivery system for targeting folate receptor-positive cancer cells.The FA-functionalized NCCs were synthesized through a series of chemical reactions,resulting in nanoparticles with favorable properties for biomedical applications.The microstructural analysis revealed that the functionalized NCCs maintained their rod-shaped morphology and displayed hydrodynamic diameters suitable for evading the mononuclear phagocytic system while being large enough to target tumor tissues.Importantly,these nanoparticles possessed a negative surface charge,enhancing their stability and repelling potential aggregation.The binding specificity of FA-functionalized NCCs to folate receptor-positive cancer cells was demonstrated through various assays.The free folic acid inhibition assay showed approximately 30%decrease in the binding of functionalized NCCs in the presence of just 5 mM free FA,confirming their selectivity for folate receptor-positive cells.Confocal microscopy further validated this specificity,as only cancer cells displayed significant binding of functionalized NCCs.Crucially,biocompatibility tests revealed that both NCCs and FA-functionalized NCCs had minimal effects on red blood cells,and they did not induce erythrocyte aggregation.Furthermore,cell viability assays demonstrated functionalized NCCs have selective cytotoxicity against colorectal cancer cells HT-29 and SW-620(68%–88%cell viability)while sparing noncancerous colon cells CCD-18Co(81%–97%cell viability).In summary,FA-functionalized NCCs exhibit promising characteristics for targeted drug delivery in cancer therapy.Their biocompatibility,stability,and selective cytotoxicity make them an attractive option for delivering therapeutic agents to folate receptor-positive cancer cells,potentially improving the effectiveness of cancer treatments while minimizing harm to healthy tissues. 展开更多
关键词 Agricultural wastes sustainable nanocarrier blood biocompatibility folic acid receptor drug delivery system NANOMEDICINE
下载PDF
New possibility for PET plastic recycling by a tailored hydrolytic enzyme
19
作者 Shijie Yu Qinghai Li +1 位作者 Yanguo Zhang Hui Zhou 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期163-165,共3页
Plastic waste puts a huge burden on the ecosystem due to the current lack of mature recycling technology.Poly(ethylene terephthalate)(PET)is one of the most produced plastics in the world.Enzymatic decomposition holds... Plastic waste puts a huge burden on the ecosystem due to the current lack of mature recycling technology.Poly(ethylene terephthalate)(PET)is one of the most produced plastics in the world.Enzymatic decomposition holds the promise of recovering monomers from PET plastic,and the monomers can be used to regenerate new PET products.However,there are still limitations in the activity and thermal stability of the existing PET hydrolases.The recent study by Lu et al.introduced a novel PET hydrolase via machine learning-aided engineering.The obtained PET hydrolase showed excellent activity and thermal stability in the hydrolysis of PET and is capable of directly degrading large amounts of postconsumer PET products.This approach provides an effective method for recycling PET waste and is expected to improve the current state of plastic pollution worldwide. 展开更多
关键词 Plastic waste Poly(ethylene terephthalate) HYDROLYSIS Machine learning Enzymatic depolymerization HYDROLASES
下载PDF
Particle agglomeration and inhibition method in the fluidized pyrolysis reaction of waste resin
20
作者 Congjing Ren Peng Zhang +3 位作者 Qi Song Zhengliang Huang Yao Yang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期135-147,共13页
This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and... This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles. 展开更多
关键词 Pyrolysis reaction of waste resin FLUIDIZATION Particle agglomeration KAOLIN
下载PDF
上一页 1 2 108 下一页 到第
使用帮助 返回顶部