Nitrobenzene-containing industrial wastewater was degraded in the presence of ozone coupled with H2O2 by high gravity technology. The effect of high gravity factor, H2O2 concentration, pH value, liquid flow-rate, and ...Nitrobenzene-containing industrial wastewater was degraded in the presence of ozone coupled with H2O2 by high gravity technology. The effect of high gravity factor, H2O2 concentration, pH value, liquid flow-rate, and reaction time on the efficiency for removal of nitrobenzene was investigated. The experimental results show that the high gravity technology enhances the ozone utilization efficiency with O3/H202 showing synergistic effect. The degradation efficiency in terms of the COD removal rate and nitrobenzene removal rate reached 45.8% and 50.4%, respectively, under the following reaction conditions, viz.: a high gravity factor of 66.54, a pH value of 9, a H2O2/O3 molar ratio of 1:1, a liquid flow rate of 140 L/h, an ozone concentration of 40 rag/L, a H2O2 multiple dosing mode of 6 mL/h, and a reaction time of 4 h. Compared with the performance of conventional stirred aeration mixers, the high gravity technology could increase the COD and nitrobenzene removal rate related with the nitrobenzene-containing wastewater by 22.9% and 23.3%, respectively.展开更多
Both activity and stability of the catalyst can be improved in heterogeneous Fenton reaction,in particular,with no limitation for the working p H and no production of the sludge.In this work,a combination of catalyst ...Both activity and stability of the catalyst can be improved in heterogeneous Fenton reaction,in particular,with no limitation for the working p H and no production of the sludge.In this work,a combination of catalyst Cu_2O and pore-channel-dispersed H_2O_2is proposed to treat the pulp wastewater.Degradation degree of CODs in the wastewater was up to 77%in the ceramic membrane reactor using Cu_2O powder(2.0 g·L^(-1))and membranefeeding H_2O_2(0.8 ml·L^(-1))within 60 min.Evolution of·OH radical formation in the advanced oxidation process was analyzed with a fluorescent method.Utilization efficiency of H_2O_2was successfully enhanced by 10%with the membrane distributor.Further on,the catalyst recyclability was evaluated in a five-cycle test.The concentration of copper ions being dissolved in the treated water was monitored with ICP.After Cu_2O/H_2O_2(membrane)treatment the effluent is qualified to discharge with COD concentration lower than 15 mg·L^(-1)with regard to the national standard GB25467-2010.展开更多
Reaction of 2-pyridone, copper acetate and terbium(or yttrium) perchlorate in acetone with the mole ratio 6: 2: 1 results in the formation of heteronuclear complex Ln_2Cu_4L_8 (HL)_4 (OH)_2 (ClO_4)_4 (H_20)_(10) 2CH_3...Reaction of 2-pyridone, copper acetate and terbium(or yttrium) perchlorate in acetone with the mole ratio 6: 2: 1 results in the formation of heteronuclear complex Ln_2Cu_4L_8 (HL)_4 (OH)_2 (ClO_4)_4 (H_20)_(10) 2CH_3COCH_3(Ln = Tb (1), Y (2)). By recrystallizing (1) in CHCl_3 single crystals were obtained and the structure was determined by four-circle diffractometer. Data showed that the crystal is in space group C2/m with a=27. 454(9)A, b=13, 608A, c=30. 556(11)A, β=99. 89(3)°, v=11245. 7(7. 5)A^3. The structure was solved by a combination of Patterson method and Fourier technique. The final R value is 0. 103. In the structure, four copper and two terbium ions are bridged by 2-pyridone anions to form an essentially octahedral Cu_4Tb_2 core. The terbium atoms are each eight-coordinate and the copper atoms are five-coordinate.展开更多
Using coal gangue(CG)as raw material,a new type of all solid-waste-based 13-X molecular sieve material was controllably prepared by alkali fusion-hydrothermal method.The synthetic molecular sieve was used as a solid a...Using coal gangue(CG)as raw material,a new type of all solid-waste-based 13-X molecular sieve material was controllably prepared by alkali fusion-hydrothermal method.The synthetic molecular sieve was used as a solid adsorbent to treat Cd^(2+)-containing wastewater,and its adsorption behavior on Cd^(2+)in aqueous solution was studied and analyzed.The microstructure and morphology of the molecular sieve were investigated by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM)and specific surface area analyzer.The results show that the synthesized 13-X molecular sieve has higher Brunauer–Emmett–Teller(BET)specific surface area with higher crystallinity and higher adsorption capacity for the heavy metal Cd^(2+).The adsorption process of Cd^(2+)by molecular sieve conforms to the Langmuir isotherm adsorption equation and Lagergren pseudo-second-order rate equation.Combined with thermodynamic calculation,it can be concluded that the adsorption process is physically monolayer,spontaneous and exothermic.In this study,a low-cost and naturally available synthesis method of 13-X molecular sieve is reported.Combined with its adsorption mechanism for Cd^(2+),it provides a feasible and general method for removing heavy metal ions from coal gangue and also provides a new way for the utilization of coal gangue with high added value.展开更多
研究了以水淬渣-累托石为吸附剂对含Cu2+的冶金废水进行处理。实验结果表明,在不调节含Cu2+冶金废水pH值的条件下,水淬渣与累托石质量比为3∶1,吸附剂用量为0.03 g/mL,作用时间为20 m in,温度为25℃(常温)时,Cu2+的去除率达99.8%,对Cu2...研究了以水淬渣-累托石为吸附剂对含Cu2+的冶金废水进行处理。实验结果表明,在不调节含Cu2+冶金废水pH值的条件下,水淬渣与累托石质量比为3∶1,吸附剂用量为0.03 g/mL,作用时间为20 m in,温度为25℃(常温)时,Cu2+的去除率达99.8%,对Cu2+的吸附容量为0.302 mg/g,处理后的水符合国家污水综合排放标准(GB8978-1996)一级标准。水淬渣-累托石混合吸附剂比水淬渣或累托石单一吸附剂除Cu2+效果要好。展开更多
基金financially supported by the National Natural Science Foundation of China(21206153)Science and Technology Development Program Fund of Taiyuan City(120164053)
文摘Nitrobenzene-containing industrial wastewater was degraded in the presence of ozone coupled with H2O2 by high gravity technology. The effect of high gravity factor, H2O2 concentration, pH value, liquid flow-rate, and reaction time on the efficiency for removal of nitrobenzene was investigated. The experimental results show that the high gravity technology enhances the ozone utilization efficiency with O3/H202 showing synergistic effect. The degradation efficiency in terms of the COD removal rate and nitrobenzene removal rate reached 45.8% and 50.4%, respectively, under the following reaction conditions, viz.: a high gravity factor of 66.54, a pH value of 9, a H2O2/O3 molar ratio of 1:1, a liquid flow rate of 140 L/h, an ozone concentration of 40 rag/L, a H2O2 multiple dosing mode of 6 mL/h, and a reaction time of 4 h. Compared with the performance of conventional stirred aeration mixers, the high gravity technology could increase the COD and nitrobenzene removal rate related with the nitrobenzene-containing wastewater by 22.9% and 23.3%, respectively.
基金Supported by the Prospective Research Project of Jiangsu Province(BY2014005-06)
文摘Both activity and stability of the catalyst can be improved in heterogeneous Fenton reaction,in particular,with no limitation for the working p H and no production of the sludge.In this work,a combination of catalyst Cu_2O and pore-channel-dispersed H_2O_2is proposed to treat the pulp wastewater.Degradation degree of CODs in the wastewater was up to 77%in the ceramic membrane reactor using Cu_2O powder(2.0 g·L^(-1))and membranefeeding H_2O_2(0.8 ml·L^(-1))within 60 min.Evolution of·OH radical formation in the advanced oxidation process was analyzed with a fluorescent method.Utilization efficiency of H_2O_2was successfully enhanced by 10%with the membrane distributor.Further on,the catalyst recyclability was evaluated in a five-cycle test.The concentration of copper ions being dissolved in the treated water was monitored with ICP.After Cu_2O/H_2O_2(membrane)treatment the effluent is qualified to discharge with COD concentration lower than 15 mg·L^(-1)with regard to the national standard GB25467-2010.
基金Project supported by China National Climbing plan and National Nature Science Foundation
文摘Reaction of 2-pyridone, copper acetate and terbium(or yttrium) perchlorate in acetone with the mole ratio 6: 2: 1 results in the formation of heteronuclear complex Ln_2Cu_4L_8 (HL)_4 (OH)_2 (ClO_4)_4 (H_20)_(10) 2CH_3COCH_3(Ln = Tb (1), Y (2)). By recrystallizing (1) in CHCl_3 single crystals were obtained and the structure was determined by four-circle diffractometer. Data showed that the crystal is in space group C2/m with a=27. 454(9)A, b=13, 608A, c=30. 556(11)A, β=99. 89(3)°, v=11245. 7(7. 5)A^3. The structure was solved by a combination of Patterson method and Fourier technique. The final R value is 0. 103. In the structure, four copper and two terbium ions are bridged by 2-pyridone anions to form an essentially octahedral Cu_4Tb_2 core. The terbium atoms are each eight-coordinate and the copper atoms are five-coordinate.
基金This study was financially supported by the National Natural Science Foundation of China(No.52172099)the Basic Research Plan of Natural Science of Shaanxi Province(No.2020JQ-754)+3 种基金the Key Innovation Team of Shaanxi Province(No.2014KCT-04)the Excellent Youth Science and Technology Fund Project of Xi'an University of Science and Technology(Grant No.6310221009)the Excellent Youth Science and Technology Fund Project of Xi'an University of Science and Technology(Grant No.6310221009)the Special Project of Shaanxi Province(No.19JK0490)and the Study on Preparation and Properties of New Solid-Wastebased Cementitious Materials(No.6000190120).
文摘Using coal gangue(CG)as raw material,a new type of all solid-waste-based 13-X molecular sieve material was controllably prepared by alkali fusion-hydrothermal method.The synthetic molecular sieve was used as a solid adsorbent to treat Cd^(2+)-containing wastewater,and its adsorption behavior on Cd^(2+)in aqueous solution was studied and analyzed.The microstructure and morphology of the molecular sieve were investigated by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM)and specific surface area analyzer.The results show that the synthesized 13-X molecular sieve has higher Brunauer–Emmett–Teller(BET)specific surface area with higher crystallinity and higher adsorption capacity for the heavy metal Cd^(2+).The adsorption process of Cd^(2+)by molecular sieve conforms to the Langmuir isotherm adsorption equation and Lagergren pseudo-second-order rate equation.Combined with thermodynamic calculation,it can be concluded that the adsorption process is physically monolayer,spontaneous and exothermic.In this study,a low-cost and naturally available synthesis method of 13-X molecular sieve is reported.Combined with its adsorption mechanism for Cd^(2+),it provides a feasible and general method for removing heavy metal ions from coal gangue and also provides a new way for the utilization of coal gangue with high added value.
文摘研究了以水淬渣-累托石为吸附剂对含Cu2+的冶金废水进行处理。实验结果表明,在不调节含Cu2+冶金废水pH值的条件下,水淬渣与累托石质量比为3∶1,吸附剂用量为0.03 g/mL,作用时间为20 m in,温度为25℃(常温)时,Cu2+的去除率达99.8%,对Cu2+的吸附容量为0.302 mg/g,处理后的水符合国家污水综合排放标准(GB8978-1996)一级标准。水淬渣-累托石混合吸附剂比水淬渣或累托石单一吸附剂除Cu2+效果要好。