In this article, wastewater sludge ecological stabilization (WWSES) was presented for sludge dewatering, mineralization, and stabilization, as well as for percolate treatment. Two years of pilot scale experimental r...In this article, wastewater sludge ecological stabilization (WWSES) was presented for sludge dewatering, mineralization, and stabilization, as well as for percolate treatment. Two years of pilot scale experimental results indicated that sludge volatile solid, Wiphenyltetrazolium chloride (TTC)-dehydrogenase activity (DHA), and moisture content as indicators showed the process and degree of sludge stabilization. The observation on dewatering process showed that dried sludge reached a content of 20%-50% total solid after two years of system operation. Sludge TTC-DHA in the first year was obviously lower than that of the second year, and TTC-DHA tended to decrease with an increase in the drying time of the sludge. Total nitrogen, total phosphorus, and organic contents of sludge decreased gradually from the top to the bottom of dried sludge layer. In comparison with natural stands on stands treated with sewage sludge, individual shoot was significantly higher, and coarse protein, coarse fat, and coarse fiber contents in reed roots, stems, and leaves in the system were higher than that of wild reed, especially coarse protein contents of reed roots in the system (7.38%) were obviously higher than that of wild reeds (3.29%).展开更多
This study was undertaken to screen the filamentous fungi isolated from its relevant habitats(wastewater, sewage sludge and sludge cake) for the bioconversion of domestic wastewater sludge. A total of 35 fungal strain...This study was undertaken to screen the filamentous fungi isolated from its relevant habitats(wastewater, sewage sludge and sludge cake) for the bioconversion of domestic wastewater sludge. A total of 35 fungal strains were tested against wastewater sludge (total suspended solids, TSS 1%—5% w/w) to evaluate its potentiality for enhancing the biodegradability and dewaterability using liquid state bioconversion(LSB) process. The strains were divided into five groups i.e. Penicillium, Aspergillus, Trichoderma, Basidiomycete and Miscellaneous, respectively. The strains WWZP1003, SCahmA103, SCahmT105 and PC-9 among their respective groups of Penicillium, Aspergillus, Trichoderma and Basidiomycete played potential roles in terms of separation(formation of pellets/flocs/filaments), biodegradation(removal of COD) and filtration(filterability) of treated domestic wastewater sludge. The Miscellaneous group was not considered due to its unsatisfactory results as compared to the other groups. The pH value was also influenced by the microbial treatment during fermentation process. The filterability of treated sludge was improved by fungal treatment, and lowest filtration time was recorded for the strain WWZP1003 and SCahmA103 of Penicillium and Aspergillus groups respectively compared with other strains.展开更多
Wastewater sludge creates a difficult environmental problem for many large cities.This study developed a three-phase innovative strategy for sludge treatment and reduction,including thermal hydrolysis,fungal fermentat...Wastewater sludge creates a difficult environmental problem for many large cities.This study developed a three-phase innovative strategy for sludge treatment and reduction,including thermal hydrolysis,fungal fermentation,and anaerobic digestion.Increasing the temperature during the treatment from 140 to 180℃ significantly improved the sludge reduction and organic release efficiencies(p<0.05,one-way analysis of variance(ANOVA)for the triplicate experiments at each temperature).After two cycles of thermal hydrolysis,the overall volatile solid reduction ratios of the sludge were 36.6%,47.7%,and 58.5%for treatment at 140,160,and 180℃,respectively,and the total organic carbon(TOC)conversion efficiency reached 28.0%,38.0%,and 45.1%,respectively.The highest concentrations of carbohydrates and proteins were obtained at 160℃ in sludge liquor,whereas the amount of humic substances significantly increased for the treatment at 180℃(p<0.05,one-way ANOVA for the triplicate experiments at each temperature)due to the Maillard reaction.Fungal fermentation of the hydrolyzed sludge liquor with Aspergillus niger converted the waste organics to valuable fiber materials.The biomass concentration of fungal hyphae reached 1.30 and 1.27 g·L^(-1) in the liquor of sludge treated at 140 and 160C,corresponding to organic conversion ratios of 24.6%and 24.0%,respectively.The fungal hyphae produced from the sludge liquor can be readily used for making papers or similar value-added fibrous products.The paper sheets made of hyphae fibers had a dense structure and strong strength with a tensile strength of 10.75 N·m·g^(-1).Combining fungal fermentation and anaerobic digestion,the overall organic utilization efficiency can exceed 75%for the liquor of sludge treated at 160℃.展开更多
The possible impacts on nitrogen-cycle in a p-nitrophenol (PNP) polluted soil and the effectiveness of wastewater sludge amendments in restoring nitrification potential and urease activity were evaluated by an incub...The possible impacts on nitrogen-cycle in a p-nitrophenol (PNP) polluted soil and the effectiveness of wastewater sludge amendments in restoring nitrification potential and urease activity were evaluated by an incubation study. The results indicated that PNP at 250 mg/kg soil inhibited urease activity, nitrification potential, arginine ammonification rate and heterotrophic bacteria counts to some extents. After exposure to PNP, the nitrification potential of the tested soil was dramatically reduced to zero over a period of 30 days. Based on the findings, nitrification potential was postulated as a simple biochemical indicator for PNP pollution in soils. Nitrogen-cycling processes in soils responded positively to the applications of wastewater sludges. A sludge application rate of 200 tons/ha was sufficient for successful biostimulation of these nitrogen processes. The microbial activities in sludge-amended, heavy PNP-polluted soils seemed to recover after 30–45 days, indicating the effectiveness of sludge as a useful soil amendment.展开更多
The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33℃...The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33℃, agitation of 150 r/min, and pH of 5 were chosen as center point from the previous study of fungal treatment. The experimental data on chemical oxygen demand (COD) removal (%) were fitted into a quadratic polynomial model using multiple regression analysis. The optimum process conditions were determined by analyzing response surface three-dimensional surface plot and contour plot and by solving the regression model equation with Design Expert software. Box-Behnken design technique under RSM was used to optimize their interactions, which showed that an incubation temperature of 32.5℃, agitation of 105 r/min, and pH of 5.5 were the best conditions. Under these conditions, the maximum predicted yield of COD removal was 98.43%. These optimum conditions were used to evaluate the trail experiment, and the maximum yield of COD removal was recorded as 98.5%.展开更多
The maximum specific methanogenic activity (SMA) of a sludge originating from a brewery wastewater treatment plant on the degradation of glucose was investigated at various levels of sulfate on a specific loading ba...The maximum specific methanogenic activity (SMA) of a sludge originating from a brewery wastewater treatment plant on the degradation of glucose was investigated at various levels of sulfate on a specific loading basis. Batch experiments were conducted in serum bottles at pH 7 and 35℃. A comparison of the values indicates that the SMA of this mixed culture was increased and reached its highest level of 0.128 g CH4 gas COD/(g VSS.d) when biomass was in contact with sulfate at a ratio of 1:0.114 by weight.展开更多
The sustainable recovery and utilization of sludge bioenergy within a circular economy context has drawn increasing attention,but there is currently a shortage of reliable technology.This study presents an innovative ...The sustainable recovery and utilization of sludge bioenergy within a circular economy context has drawn increasing attention,but there is currently a shortage of reliable technology.This study presents an innovative biotechnology based on free nitrous acid(FNA)to realize sustainable organics recovery from waste activated sludge(WAS)in-situ,driving efficient nitrogen removal from ammonia rich mature landfill leachate by integrating partial nitrification,fermentation,and denitrification process(PN/DN-F/DN).First,ammonia((1708.5±142.9)mg·L^(-1))in mature landfill leachate is oxidized to nitrite in the aerobic stage of a partial nitrification coupling denitrification(PN/DN)sequencing batch reactor(SBR),with nitrite accumulation ratio of 95.4%±2.5%.Then,intermediate effluent(NO_(2)^(-)-N=(1196.9±184.2)mg·L^(-1))of the PN/DN-SBR,along with concentrated WAS(volatile solids(VSs)=(15119.8±2484.2)mg·L^(-1)),is fed into an anoxic reactor for fermentation coupling denitrification process(F/DN).FNA,the protonated form of nitrite,degrades organics in the WAS to the soluble fraction by the biocidal effect,and the released organics are utilized by denitrifiers to drive NOx-reduction.An ultra-fast sludge reduction rate of 4.89 kg·m^(-3)·d^(-1) and nitrogen removal rate of 0.46 kg·m^(-3)·d^(-1) were realized in the process.Finally,F/DN-SBR effluent containing organics is refluxed to PN/DN-SBR for secondary denitrification in the post anoxic stage.After 175 d operation,an average of 19350.6 mg chemical oxygen demand organics were recovered per operational cycle,with 95.2%nitrogen removal and 53.4%sludge reduction.PN/DN-F/DN is of great significance for promoting a paradigm transformation from energy consumption to energy neutral,specifically,the total benefit in equivalent terms of energy was 291.8 kW·h·t^(-1) total solid.展开更多
In this study,an effective antibiotic-degrading strain NG3 was isolated from activated sludge of antibiotic wastewater treatment.According to the results of morphological,physiological and biochemical identification a...In this study,an effective antibiotic-degrading strain NG3 was isolated from activated sludge of antibiotic wastewater treatment.According to the results of morphological,physiological and biochemical identification and phylogenetical analysis of 16S r DNA sequence,the isolated strain belonged to Acinetobacter sp.,which was named Acinetobacter sp.NG3.Moreover,biological properties of the isolated strain were analyzed preliminarily,which provided a basis for the application of Acinetobacter sp.NG3 strain in efficient treatment of antibiotic industrial wastewater.展开更多
Citrate (Ct) was chosen as a typical chelator used in the Fe^(2+)-peroxydisulfate (PDS) process to improve sludge dewaterability.The PDS-Fe^(2+)-Ct process exhibited better performance in sludge dewatering than PDS-Fe...Citrate (Ct) was chosen as a typical chelator used in the Fe^(2+)-peroxydisulfate (PDS) process to improve sludge dewaterability.The PDS-Fe^(2+)-Ct process exhibited better performance in sludge dewatering than PDS-Fe^(2+).Specifically,with a PDS dosage of 1.2 mmol/g VS,the molar ratio of PDS/Fe^(2+)and Ct/Fe^(2+)were 4:5 and 1:4,respectively,the capillary suction time decreased from 155.8 to 24.8sec,and the sludge cake water content decreased from 82.62%to 64.11%(-0.06MPa).The oxidation led to a reduced negative charge and a decrease in particle size.The enhanced sludge dewaterability and changes of sludge properties were attributed to the decomposition of extracellular polymeric substances,and it was explored by protein,polysaccharide,3D-EEMs,and FT-IR.Additionally,the quenching experiments of radical species demonstrated that SO_(4)-·played a more important role than·OH,and its productivity was improved with the addition of Ct.Moreover,the reasons for the improved productivity of radicals with the addition of Ct were discussed.The results of this study could serve as a basis for improving sludge dewatering using the PDS-Fe^(2+)-Ct process and suggest that the addition of Ct may improve the productivity of SO_(4)-·in the activation o PDS via Fe^(2+).展开更多
The effects of four conditioning approaches:Acid,Acid-zero-valent iron(ZVI)/peroxydisulfate(PMS),Fe(Ⅱ)/PMS and ZVI/PMS,on wastewater activated sludge(WAS)dewatering and organics distribution in supernatant and extrac...The effects of four conditioning approaches:Acid,Acid-zero-valent iron(ZVI)/peroxydisulfate(PMS),Fe(Ⅱ)/PMS and ZVI/PMS,on wastewater activated sludge(WAS)dewatering and organics distribution in supernatant and extracellular polymeric substances(EPS)layers were investigated.The highest reduction in bound water and the most WAS destruction was achieved by Acid-ZVI/PMS,and the optimum conditions were pH 3,ZVI dosage 0.15 g/g dry solid(DS),oxone dosage 0.07 g/g DS and reaction time 10.6 min with the reductions in capillary suction time(CST)and water content(Wc)as 19.67%and 8.49%,respectively.Four conditioning approaches could result in TOC increase in EPS layers and supernatant,and protein(PN)content in tightly bound EPS(TB-EPS).After conditioning,organics in EPS layers could migrate to supernatant.Polysaccharide(PS)was easier to migrate to supernatant than PN.In addition,Acid,Acid-ZVI/PMS or Fe(Ⅱ)/PMS conditioning promoted the release of some polysaccharides containing ring vibrations v P=O,v C-O-C,v C-O-P functional groups from TB-EPS.ESR spectra proved that both radicals of SO4-·and·OH contributed to dewatering and organics transformation and migration.CST value of WAS positively correlated with the ratios of PN/PS in LB-EPS and total EPS,while it negatively correlated with TOC,PN content and PS content in TB-EPS,as well as PS content in supernatant and LB-EPS.BWC negatively correlated to zeta potential and TOC value,PN content,and HA content in supernatant.展开更多
Millions of tons of waste activated sludge(WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critica...Millions of tons of waste activated sludge(WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critical for sustainable sludge management. In this work, the occurrence and distribution of several fundamental sludge constituents were explored in WAS samples from nine full-scale wastewater treatment plants(WWTPs) of Beijing, China. Among all the components investigated, active heterotrophic biomass was dominant in the samples(up to 9478 mg/L), followed by endogenous residues(6736 mg/L),extracellular polymeric substances(2088 mg/L), and intracellular storage products(464 mg/L)among others. Moreover, significant differences(p 〈 0.05) were observed in composition profiles of sludge samples among the studied WWTPs. To identify the potential parameters affecting the variable fractions of sludge components, wastewater source as well as design and operational parameters of WWTPs were studied using statistical methods. The findings indicated that the component fraction of sewage sludge depends more on wastewater treatment alternatives than on wastewater characteristics among other parameters. A principal component analysis was conducted, which further indicated that there was a greater proportion of residual inert biomass in the sludge produced by the combined system of the conventional anaerobic/anoxic/oxic process and a membrane bioreactor. Additionally, a much longer solids retention time was also found to influence the sludge composition and induce an increase in both endogenous inert residues and extracellular polymeric substances in the sludge.展开更多
In this study, a novel scaled-up hybrid acidogenic bioreactor(HAB) was designed and adopted to evaluate the performance of azo dye(acid red G, ARG) containing wastewater treatment. Principally, HAB is an acidogeni...In this study, a novel scaled-up hybrid acidogenic bioreactor(HAB) was designed and adopted to evaluate the performance of azo dye(acid red G, ARG) containing wastewater treatment. Principally, HAB is an acidogenic bioreactor coupled with a biocatalyzed electrolysis module. The effects of hydraulic retention time(HRT) and ARG loading rate on the performance of HAB were investigated. In addition, the influent was switched from synthetic wastewater to domestic wastewater to examine the key parameters for the application of HAB. The results showed that the introduction of the biocatalyzed electrolysis module could enhance anoxic decolorization and COD(chemical oxygen demand) removal. The combined process of HAB-CASS presented superior performance compared to a control system without biocatalyzed electrolysis(AB-CASS). When the influent was switched to domestic wastewater, with an environment having more balanced nutrients and diverse organic matters, the ARG, COD and nitrogen removal efficiencies of HAB-CASS were further improved, reaching 73.3% ± 2.5%, 86.2% ± 3.8% and 93.5% ± 1.6% at HRT of 6 hr, respectively, which were much higher than those of AB-CASS(61.1% ± 4.7%,75.4% ± 5.0% and 82.1% ± 2.1%, respectively). Moreover, larger TCV/TV(total cathode volume/total volume) for HAB led to higher current and ARG removal. The ARG removal efficiency and current at TCV/TV of 0.15 were 39.2% ± 3.7% and 28.30 ± 1.48 mA,respectively. They were significantly increased to 62.1% ± 2.0% and 34.55 ± 0.83 mA at TCV/TV of 0.25. These results show that HAB system could be used to effectively treat real wastewater.展开更多
A dairy wastewater treatment system composed of the 1st segment(no aeration) equipped with a facility for the destruction of milk fat particles, four successive aerobic treatment segments with activated sludge and a...A dairy wastewater treatment system composed of the 1st segment(no aeration) equipped with a facility for the destruction of milk fat particles, four successive aerobic treatment segments with activated sludge and a final sludge settlement segment was developed. The activated sludge is circulated through the six segments by settling sediments(activated sludge) in the 6th segment and sending the sediments beck to the 1st and 2nd segments.Microbiota was examined using samples from the non-aerated 1st and aerated 2nd segments obtained from two farms using the same system in summer or winter. Principal component analysis showed that the change in microbiota from the 1st to 2nd segments concomitant with effective wastewater treatment is affected by the concentrations of activated sludge and organic matter(biological oxygen demand [BOD]), and dissolved oxygen(DO) content. Microbiota from five segments(1st and four successive aerobic segments) in one location was also examined. Although the activated sludge is circulating throughout all the segments, microbiota fluctuation was observed. The observed successive changes in microbiota reflected the changes in the concentrations of organic matter and other physicochemical conditions(such as DO), suggesting that the microbiota is flexibly changeable depending on the environmental condition in the segments. The genera Dechloromonas, Zoogloea and Leptothrix are frequently observed in this wastewater treatment system throughout the analyses of microbiota in this study.展开更多
Antibiotic resistance and its environmental component are gaining more attention as part of combating the growing healthcare crisis. The One Health framework, promulgated by many global health agencies, recognizes tha...Antibiotic resistance and its environmental component are gaining more attention as part of combating the growing healthcare crisis. The One Health framework, promulgated by many global health agencies, recognizes that antimicrobial resistance is a truly inter-domain problem in which human health, animal agriculture, and the environment are the core and interrelated components.This prospectus presents the status and issues relevant to the environmental component of antibiotic resistance, namely, the needs for advancing surveillance methodology: the environmental reservoirs and sources of resistance, namely, urban wastewater treatment plants, aquaculture production systems, soil receiving manure and biosolid, and the atmosphere which includes longer range dispersal.Recently, much work has been done describing antibiotic resistance genes in various environments;now quantitative, mechanistic,and hypothesis-driven studies are needed to identify practices that reduce real risks and maintain the effectiveness of our current antibiotics as long as possible. Advanced deployable detection methods for antibiotic resistance in diverse environmental samples are needed in order to provide the surveillance information to identify risks and define barriers that can reduce risks. Also needed are practices that reduce antibiotic use and thereby reduce selection for resistance, as well as practices that limit the dispersal of or destroy antibiotic-resistant bacteria or their resistance genes that are feasible for these varied environmental domains.展开更多
文摘In this article, wastewater sludge ecological stabilization (WWSES) was presented for sludge dewatering, mineralization, and stabilization, as well as for percolate treatment. Two years of pilot scale experimental results indicated that sludge volatile solid, Wiphenyltetrazolium chloride (TTC)-dehydrogenase activity (DHA), and moisture content as indicators showed the process and degree of sludge stabilization. The observation on dewatering process showed that dried sludge reached a content of 20%-50% total solid after two years of system operation. Sludge TTC-DHA in the first year was obviously lower than that of the second year, and TTC-DHA tended to decrease with an increase in the drying time of the sludge. Total nitrogen, total phosphorus, and organic contents of sludge decreased gradually from the top to the bottom of dried sludge layer. In comparison with natural stands on stands treated with sewage sludge, individual shoot was significantly higher, and coarse protein, coarse fat, and coarse fiber contents in reed roots, stems, and leaves in the system were higher than that of wild reed, especially coarse protein contents of reed roots in the system (7.38%) were obviously higher than that of wild reeds (3.29%).
文摘This study was undertaken to screen the filamentous fungi isolated from its relevant habitats(wastewater, sewage sludge and sludge cake) for the bioconversion of domestic wastewater sludge. A total of 35 fungal strains were tested against wastewater sludge (total suspended solids, TSS 1%—5% w/w) to evaluate its potentiality for enhancing the biodegradability and dewaterability using liquid state bioconversion(LSB) process. The strains were divided into five groups i.e. Penicillium, Aspergillus, Trichoderma, Basidiomycete and Miscellaneous, respectively. The strains WWZP1003, SCahmA103, SCahmT105 and PC-9 among their respective groups of Penicillium, Aspergillus, Trichoderma and Basidiomycete played potential roles in terms of separation(formation of pellets/flocs/filaments), biodegradation(removal of COD) and filtration(filterability) of treated domestic wastewater sludge. The Miscellaneous group was not considered due to its unsatisfactory results as compared to the other groups. The pH value was also influenced by the microbial treatment during fermentation process. The filterability of treated sludge was improved by fungal treatment, and lowest filtration time was recorded for the strain WWZP1003 and SCahmA103 of Penicillium and Aspergillus groups respectively compared with other strains.
基金This work was supported by the Shenzhen Municipal Science and Technology Innovation Council of the Shenzhen Government(JCYJ20170307153821435 and JCYJ20180508152004176)the National Natural Science Foundation of China(51678333)+1 种基金the Research Grants Council of the Hong Kong Government(17261916,T21-711/16R)the Development and Reform Commission of Shenzhen Municipality(Urban Water Recycling and Environment Safety Program).
文摘Wastewater sludge creates a difficult environmental problem for many large cities.This study developed a three-phase innovative strategy for sludge treatment and reduction,including thermal hydrolysis,fungal fermentation,and anaerobic digestion.Increasing the temperature during the treatment from 140 to 180℃ significantly improved the sludge reduction and organic release efficiencies(p<0.05,one-way analysis of variance(ANOVA)for the triplicate experiments at each temperature).After two cycles of thermal hydrolysis,the overall volatile solid reduction ratios of the sludge were 36.6%,47.7%,and 58.5%for treatment at 140,160,and 180℃,respectively,and the total organic carbon(TOC)conversion efficiency reached 28.0%,38.0%,and 45.1%,respectively.The highest concentrations of carbohydrates and proteins were obtained at 160℃ in sludge liquor,whereas the amount of humic substances significantly increased for the treatment at 180℃(p<0.05,one-way ANOVA for the triplicate experiments at each temperature)due to the Maillard reaction.Fungal fermentation of the hydrolyzed sludge liquor with Aspergillus niger converted the waste organics to valuable fiber materials.The biomass concentration of fungal hyphae reached 1.30 and 1.27 g·L^(-1) in the liquor of sludge treated at 140 and 160C,corresponding to organic conversion ratios of 24.6%and 24.0%,respectively.The fungal hyphae produced from the sludge liquor can be readily used for making papers or similar value-added fibrous products.The paper sheets made of hyphae fibers had a dense structure and strong strength with a tensile strength of 10.75 N·m·g^(-1).Combining fungal fermentation and anaerobic digestion,the overall organic utilization efficiency can exceed 75%for the liquor of sludge treated at 160℃.
文摘The possible impacts on nitrogen-cycle in a p-nitrophenol (PNP) polluted soil and the effectiveness of wastewater sludge amendments in restoring nitrification potential and urease activity were evaluated by an incubation study. The results indicated that PNP at 250 mg/kg soil inhibited urease activity, nitrification potential, arginine ammonification rate and heterotrophic bacteria counts to some extents. After exposure to PNP, the nitrification potential of the tested soil was dramatically reduced to zero over a period of 30 days. Based on the findings, nitrification potential was postulated as a simple biochemical indicator for PNP pollution in soils. Nitrogen-cycling processes in soils responded positively to the applications of wastewater sludges. A sludge application rate of 200 tons/ha was sufficient for successful biostimulation of these nitrogen processes. The microbial activities in sludge-amended, heavy PNP-polluted soils seemed to recover after 30–45 days, indicating the effectiveness of sludge as a useful soil amendment.
文摘The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33℃, agitation of 150 r/min, and pH of 5 were chosen as center point from the previous study of fungal treatment. The experimental data on chemical oxygen demand (COD) removal (%) were fitted into a quadratic polynomial model using multiple regression analysis. The optimum process conditions were determined by analyzing response surface three-dimensional surface plot and contour plot and by solving the regression model equation with Design Expert software. Box-Behnken design technique under RSM was used to optimize their interactions, which showed that an incubation temperature of 32.5℃, agitation of 105 r/min, and pH of 5.5 were the best conditions. Under these conditions, the maximum predicted yield of COD removal was 98.43%. These optimum conditions were used to evaluate the trail experiment, and the maximum yield of COD removal was recorded as 98.5%.
基金Project supported by the National Research Center of Environmental and Hazardous Waste Management(NRC-EHWM), Chulalongko1 University,Thailand.
文摘The maximum specific methanogenic activity (SMA) of a sludge originating from a brewery wastewater treatment plant on the degradation of glucose was investigated at various levels of sulfate on a specific loading basis. Batch experiments were conducted in serum bottles at pH 7 and 35℃. A comparison of the values indicates that the SMA of this mixed culture was increased and reached its highest level of 0.128 g CH4 gas COD/(g VSS.d) when biomass was in contact with sulfate at a ratio of 1:0.114 by weight.
基金supported by the Beijing Natural Science Foundation (8222040)Key Program of National Natural Science Foundation of China (52131004)+4 种基金Young Elite Scientists Sponsorship Program by China association for science and technology (CAST,YESS20220508)Young Elite Scientists Sponsorship Program by Beijing Association for Science and Technology (BAST,BYESS2023183)Innovation and Entrepreneurship Leading Team Project in Guangzhou (CYLJTD-201607)Key Research and Developmental Program of Shandong Province (2020CXGC011404)Cultivating Fund of Faculty of Environment and Life,Beijing University of Technology (PY202302).
文摘The sustainable recovery and utilization of sludge bioenergy within a circular economy context has drawn increasing attention,but there is currently a shortage of reliable technology.This study presents an innovative biotechnology based on free nitrous acid(FNA)to realize sustainable organics recovery from waste activated sludge(WAS)in-situ,driving efficient nitrogen removal from ammonia rich mature landfill leachate by integrating partial nitrification,fermentation,and denitrification process(PN/DN-F/DN).First,ammonia((1708.5±142.9)mg·L^(-1))in mature landfill leachate is oxidized to nitrite in the aerobic stage of a partial nitrification coupling denitrification(PN/DN)sequencing batch reactor(SBR),with nitrite accumulation ratio of 95.4%±2.5%.Then,intermediate effluent(NO_(2)^(-)-N=(1196.9±184.2)mg·L^(-1))of the PN/DN-SBR,along with concentrated WAS(volatile solids(VSs)=(15119.8±2484.2)mg·L^(-1)),is fed into an anoxic reactor for fermentation coupling denitrification process(F/DN).FNA,the protonated form of nitrite,degrades organics in the WAS to the soluble fraction by the biocidal effect,and the released organics are utilized by denitrifiers to drive NOx-reduction.An ultra-fast sludge reduction rate of 4.89 kg·m^(-3)·d^(-1) and nitrogen removal rate of 0.46 kg·m^(-3)·d^(-1) were realized in the process.Finally,F/DN-SBR effluent containing organics is refluxed to PN/DN-SBR for secondary denitrification in the post anoxic stage.After 175 d operation,an average of 19350.6 mg chemical oxygen demand organics were recovered per operational cycle,with 95.2%nitrogen removal and 53.4%sludge reduction.PN/DN-F/DN is of great significance for promoting a paradigm transformation from energy consumption to energy neutral,specifically,the total benefit in equivalent terms of energy was 291.8 kW·h·t^(-1) total solid.
基金Supported by of Science and Technology Research(Guiding)Project of Heilongjiang Provincial Science and Technology Department‘Study on Treatment of Antibiotic Pharmaceutical Wastewater with Efficient Complex Microorganism Immobilization Techniques’(12535090)
文摘In this study,an effective antibiotic-degrading strain NG3 was isolated from activated sludge of antibiotic wastewater treatment.According to the results of morphological,physiological and biochemical identification and phylogenetical analysis of 16S r DNA sequence,the isolated strain belonged to Acinetobacter sp.,which was named Acinetobacter sp.NG3.Moreover,biological properties of the isolated strain were analyzed preliminarily,which provided a basis for the application of Acinetobacter sp.NG3 strain in efficient treatment of antibiotic industrial wastewater.
基金supported by the National Water Pollution Control and Management Technology Major Project (No. 2018ZX07110005)the National Natural Science Foundation of China (No. 52170097)the Fundamental Research Funds for Beijing University of Civil Engineering and Architecture (Nos. X18288, X18289 and X20137)。
文摘Citrate (Ct) was chosen as a typical chelator used in the Fe^(2+)-peroxydisulfate (PDS) process to improve sludge dewaterability.The PDS-Fe^(2+)-Ct process exhibited better performance in sludge dewatering than PDS-Fe^(2+).Specifically,with a PDS dosage of 1.2 mmol/g VS,the molar ratio of PDS/Fe^(2+)and Ct/Fe^(2+)were 4:5 and 1:4,respectively,the capillary suction time decreased from 155.8 to 24.8sec,and the sludge cake water content decreased from 82.62%to 64.11%(-0.06MPa).The oxidation led to a reduced negative charge and a decrease in particle size.The enhanced sludge dewaterability and changes of sludge properties were attributed to the decomposition of extracellular polymeric substances,and it was explored by protein,polysaccharide,3D-EEMs,and FT-IR.Additionally,the quenching experiments of radical species demonstrated that SO_(4)-·played a more important role than·OH,and its productivity was improved with the addition of Ct.Moreover,the reasons for the improved productivity of radicals with the addition of Ct were discussed.The results of this study could serve as a basis for improving sludge dewatering using the PDS-Fe^(2+)-Ct process and suggest that the addition of Ct may improve the productivity of SO_(4)-·in the activation o PDS via Fe^(2+).
基金supported by the National Natural Science Foundation of China(Nos.51678035 and 51478041)
文摘The effects of four conditioning approaches:Acid,Acid-zero-valent iron(ZVI)/peroxydisulfate(PMS),Fe(Ⅱ)/PMS and ZVI/PMS,on wastewater activated sludge(WAS)dewatering and organics distribution in supernatant and extracellular polymeric substances(EPS)layers were investigated.The highest reduction in bound water and the most WAS destruction was achieved by Acid-ZVI/PMS,and the optimum conditions were pH 3,ZVI dosage 0.15 g/g dry solid(DS),oxone dosage 0.07 g/g DS and reaction time 10.6 min with the reductions in capillary suction time(CST)and water content(Wc)as 19.67%and 8.49%,respectively.Four conditioning approaches could result in TOC increase in EPS layers and supernatant,and protein(PN)content in tightly bound EPS(TB-EPS).After conditioning,organics in EPS layers could migrate to supernatant.Polysaccharide(PS)was easier to migrate to supernatant than PN.In addition,Acid,Acid-ZVI/PMS or Fe(Ⅱ)/PMS conditioning promoted the release of some polysaccharides containing ring vibrations v P=O,v C-O-C,v C-O-P functional groups from TB-EPS.ESR spectra proved that both radicals of SO4-·and·OH contributed to dewatering and organics transformation and migration.CST value of WAS positively correlated with the ratios of PN/PS in LB-EPS and total EPS,while it negatively correlated with TOC,PN content and PS content in TB-EPS,as well as PS content in supernatant and LB-EPS.BWC negatively correlated to zeta potential and TOC value,PN content,and HA content in supernatant.
基金supported by the National Natural Science Foundation of China(Nos.51408589 and 51138009)State Key Joint Laboratory of Environment Simulation and Pollution Control of China(Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,No.14Z03ESPCR)Youth Innovation Promotion Association of the Chinese Academy of Sciences
文摘Millions of tons of waste activated sludge(WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critical for sustainable sludge management. In this work, the occurrence and distribution of several fundamental sludge constituents were explored in WAS samples from nine full-scale wastewater treatment plants(WWTPs) of Beijing, China. Among all the components investigated, active heterotrophic biomass was dominant in the samples(up to 9478 mg/L), followed by endogenous residues(6736 mg/L),extracellular polymeric substances(2088 mg/L), and intracellular storage products(464 mg/L)among others. Moreover, significant differences(p 〈 0.05) were observed in composition profiles of sludge samples among the studied WWTPs. To identify the potential parameters affecting the variable fractions of sludge components, wastewater source as well as design and operational parameters of WWTPs were studied using statistical methods. The findings indicated that the component fraction of sewage sludge depends more on wastewater treatment alternatives than on wastewater characteristics among other parameters. A principal component analysis was conducted, which further indicated that there was a greater proportion of residual inert biomass in the sludge produced by the combined system of the conventional anaerobic/anoxic/oxic process and a membrane bioreactor. Additionally, a much longer solids retention time was also found to influence the sludge composition and induce an increase in both endogenous inert residues and extracellular polymeric substances in the sludge.
基金financially supported by the Ministry of Environmental Protection of the People's Republic of China (Major Science and Technology Program for Water Pollution Control and Treatment) (No. 2014ZX07204-005)the National Natural Science Foundation of China (Nos. 51222812, 31370157, 21407164, 51508551)+2 种基金the China Postdoctoral Science Foundation (No. 2015M580140)the National Science Foundation for Distinguished Young Scholars (No. 51225802)Hundred Talents Program of the Chinese Academy of Sciences (No. 29BR2013001)
文摘In this study, a novel scaled-up hybrid acidogenic bioreactor(HAB) was designed and adopted to evaluate the performance of azo dye(acid red G, ARG) containing wastewater treatment. Principally, HAB is an acidogenic bioreactor coupled with a biocatalyzed electrolysis module. The effects of hydraulic retention time(HRT) and ARG loading rate on the performance of HAB were investigated. In addition, the influent was switched from synthetic wastewater to domestic wastewater to examine the key parameters for the application of HAB. The results showed that the introduction of the biocatalyzed electrolysis module could enhance anoxic decolorization and COD(chemical oxygen demand) removal. The combined process of HAB-CASS presented superior performance compared to a control system without biocatalyzed electrolysis(AB-CASS). When the influent was switched to domestic wastewater, with an environment having more balanced nutrients and diverse organic matters, the ARG, COD and nitrogen removal efficiencies of HAB-CASS were further improved, reaching 73.3% ± 2.5%, 86.2% ± 3.8% and 93.5% ± 1.6% at HRT of 6 hr, respectively, which were much higher than those of AB-CASS(61.1% ± 4.7%,75.4% ± 5.0% and 82.1% ± 2.1%, respectively). Moreover, larger TCV/TV(total cathode volume/total volume) for HAB led to higher current and ARG removal. The ARG removal efficiency and current at TCV/TV of 0.15 were 39.2% ± 3.7% and 28.30 ± 1.48 mA,respectively. They were significantly increased to 62.1% ± 2.0% and 34.55 ± 0.83 mA at TCV/TV of 0.25. These results show that HAB system could be used to effectively treat real wastewater.
基金supported by a grant for the promotion of desterilizing regional resources funded by the Hokkaido Bureau of Economy,Trade and Industry
文摘A dairy wastewater treatment system composed of the 1st segment(no aeration) equipped with a facility for the destruction of milk fat particles, four successive aerobic treatment segments with activated sludge and a final sludge settlement segment was developed. The activated sludge is circulated through the six segments by settling sediments(activated sludge) in the 6th segment and sending the sediments beck to the 1st and 2nd segments.Microbiota was examined using samples from the non-aerated 1st and aerated 2nd segments obtained from two farms using the same system in summer or winter. Principal component analysis showed that the change in microbiota from the 1st to 2nd segments concomitant with effective wastewater treatment is affected by the concentrations of activated sludge and organic matter(biological oxygen demand [BOD]), and dissolved oxygen(DO) content. Microbiota from five segments(1st and four successive aerobic segments) in one location was also examined. Although the activated sludge is circulating throughout all the segments, microbiota fluctuation was observed. The observed successive changes in microbiota reflected the changes in the concentrations of organic matter and other physicochemical conditions(such as DO), suggesting that the microbiota is flexibly changeable depending on the environmental condition in the segments. The genera Dechloromonas, Zoogloea and Leptothrix are frequently observed in this wastewater treatment system throughout the analyses of microbiota in this study.
基金funded by the National Natural Science Foundation of China (No. 21677149)the Outstanding Youth Fund of the Natural Science Foundation of Jiangsu Province, China (No. BK20150050)+6 种基金the Innovative Project of Chinese Academy of Sciences (No. ISSASIP1616)funded by the Center for Health Impacts of Agriculture (CHIA) of Michigan State University, USAfunded by Agriculture and AgriFood Canada, the Canadian Genomics Research Development Initiative (GRDI-AMR)the Canadian Institute for Health Research (CIHR) through the Joint Programming Initiative on Antimicrobial Resistance (JPIAMR)the National Funds from FCT—Fundacao para a Ciência e a Tecnologia, Portugal (No. UID/Multi/ 50016/2013)funded by Academy of Finland and the Joint Programming Initiative “Water Challenges for a Changing World” (Water JPI)funded by the Collaborative Research Fund of Hong Kong (CRF), China (No. C6033-14G)
文摘Antibiotic resistance and its environmental component are gaining more attention as part of combating the growing healthcare crisis. The One Health framework, promulgated by many global health agencies, recognizes that antimicrobial resistance is a truly inter-domain problem in which human health, animal agriculture, and the environment are the core and interrelated components.This prospectus presents the status and issues relevant to the environmental component of antibiotic resistance, namely, the needs for advancing surveillance methodology: the environmental reservoirs and sources of resistance, namely, urban wastewater treatment plants, aquaculture production systems, soil receiving manure and biosolid, and the atmosphere which includes longer range dispersal.Recently, much work has been done describing antibiotic resistance genes in various environments;now quantitative, mechanistic,and hypothesis-driven studies are needed to identify practices that reduce real risks and maintain the effectiveness of our current antibiotics as long as possible. Advanced deployable detection methods for antibiotic resistance in diverse environmental samples are needed in order to provide the surveillance information to identify risks and define barriers that can reduce risks. Also needed are practices that reduce antibiotic use and thereby reduce selection for resistance, as well as practices that limit the dispersal of or destroy antibiotic-resistant bacteria or their resistance genes that are feasible for these varied environmental domains.