A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C...A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C/N ratio municipal wastewater in Southern China. Transformation of organic carbon, nitrogen and phosphorus, and membrane fouling were investigated. Experimental results for over four months demonstrated good efficiencies for chemical oxygen demand (COD) and NH4^+-N removal, with average values higher than 84.5%and 98.1%, re-spectively. A relatively higher total nitrogen (TN) removal efficiency (52.1%) was also obtained at low C/N ratio of 3.82, contributed by the configuration modification (anoxic zone before anaerobic zone) and the step feed with a distribution ratio of 1:1. Addition of sodium acetate into the anoxic zone as the external carbon source, with a theoretical amount of 31.3 mg COD per liter in influent, enhanced denitrification and the TN removal efficiency in-creased to 74.9%. Moreover, the total phosphate (TP) removal efficiency increased by 18.0%. It is suggested that the external carbon source is needed to improve the BNR performance in treating low C/N ratio municipal waste-water in the modified A^2O-MBR process.展开更多
A laboratory-scale anaerobic-anoxic-aerobic process(A^(2)O)with a small aerobic zone and a bigger anoxic zone and biologic aerated filter(A^(2)O-BAF)system was operated to treat low carbon-to-nitrogen ratio domestic w...A laboratory-scale anaerobic-anoxic-aerobic process(A^(2)O)with a small aerobic zone and a bigger anoxic zone and biologic aerated filter(A^(2)O-BAF)system was operated to treat low carbon-to-nitrogen ratio domestic wastewater.The A^(2)O process was employed mainly for organic matter and phosphorus removal,and for denitrification.The BAF was only used for nitrification which coupled with a settling tank Compared with a conventional A^(2)O process,the suspended activated sludge in this A^(2)OBAF process contained small quantities of nitrifier,but nitrification overwhelmingly conducted in BAF.So the system successfully avoided the contradiction in sludge retention time(SRT)between nitrifying bacteria and phosphorus accumulating organisms(PAOs).Denitrifying phosphorus accumulating organisms(DPAOs)played an important role in removing up to 91%of phosphorus along with nitrogen,which indicated that the suspended activated sludge process presented a good denitrifying phosphorus removal performance.The average removal efficiency of chemical oxygen demand(COD),total nitrogen(TN),total phosphorus(TP),and NH_(4)^(+)-N were 85.56%,92.07%,81.24%and 98.7%respectively.The effluent quality consistently satisfied the national first level A effluent discharge standard of China.The average sludge volume index(SVI)was 85.4 mL·g^(-1)additionally,the volume ratio of anaerobic,anoxic and aerobic zone in A^(2)O process was also investigated,and the results demonstrated that the optimum value was 1:6:2.展开更多
基金Supported by the National Water Pollution Control and Management(2008ZX07316-002)the University of Macao Research Committee(RG067/09-10S/SHJ/FST)
文摘A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C/N ratio municipal wastewater in Southern China. Transformation of organic carbon, nitrogen and phosphorus, and membrane fouling were investigated. Experimental results for over four months demonstrated good efficiencies for chemical oxygen demand (COD) and NH4^+-N removal, with average values higher than 84.5%and 98.1%, re-spectively. A relatively higher total nitrogen (TN) removal efficiency (52.1%) was also obtained at low C/N ratio of 3.82, contributed by the configuration modification (anoxic zone before anaerobic zone) and the step feed with a distribution ratio of 1:1. Addition of sodium acetate into the anoxic zone as the external carbon source, with a theoretical amount of 31.3 mg COD per liter in influent, enhanced denitrification and the TN removal efficiency in-creased to 74.9%. Moreover, the total phosphate (TP) removal efficiency increased by 18.0%. It is suggested that the external carbon source is needed to improve the BNR performance in treating low C/N ratio municipal waste-water in the modified A^2O-MBR process.
基金This work was supported by the project of Scientific Research Base And Scientific Innovation Platform of Beijing Municipal Education Commission(No.PXM2008_014204_050843)Supported by State Key Laboratory of Urban Water Resource and Environment(HIT)(No.QAK200802).
文摘A laboratory-scale anaerobic-anoxic-aerobic process(A^(2)O)with a small aerobic zone and a bigger anoxic zone and biologic aerated filter(A^(2)O-BAF)system was operated to treat low carbon-to-nitrogen ratio domestic wastewater.The A^(2)O process was employed mainly for organic matter and phosphorus removal,and for denitrification.The BAF was only used for nitrification which coupled with a settling tank Compared with a conventional A^(2)O process,the suspended activated sludge in this A^(2)OBAF process contained small quantities of nitrifier,but nitrification overwhelmingly conducted in BAF.So the system successfully avoided the contradiction in sludge retention time(SRT)between nitrifying bacteria and phosphorus accumulating organisms(PAOs).Denitrifying phosphorus accumulating organisms(DPAOs)played an important role in removing up to 91%of phosphorus along with nitrogen,which indicated that the suspended activated sludge process presented a good denitrifying phosphorus removal performance.The average removal efficiency of chemical oxygen demand(COD),total nitrogen(TN),total phosphorus(TP),and NH_(4)^(+)-N were 85.56%,92.07%,81.24%and 98.7%respectively.The effluent quality consistently satisfied the national first level A effluent discharge standard of China.The average sludge volume index(SVI)was 85.4 mL·g^(-1)additionally,the volume ratio of anaerobic,anoxic and aerobic zone in A^(2)O process was also investigated,and the results demonstrated that the optimum value was 1:6:2.