Tong's B-type water drive method was proposed as early as the 1970s and has been widely applied in the dynamic prediction and effective evaluation of oilfield development.Through extensive applications and studies...Tong's B-type water drive method was proposed as early as the 1970s and has been widely applied in the dynamic prediction and effective evaluation of oilfield development.Through extensive applications and studies,many researchers found that the statistical constants in the formula of the Tong's B-type water drive method(also referred to as the Tong's B-type formula)are not applicable to multiple types of reservoirs,especially low-permeability ones,due to the limited range of reservoir types when the formula was conceived.Moreover,they put forward suggestions to improve the Tong's B-type formula,most of which focused on the research and calculation of the first constant in the formula.For oilfields in the development stages of high or ultra-high water cuts,it is widely accepted that different types of reservoirs have different limit water cuts.This understanding naturally makes it necessary to further modify the Tong's B-type formula.It is practically significant to establish the water drive formula and cross plot considering that the two constants in the formula vary with reservoir type.By analyzing the derivation process and conditions of the Tong's B-type formula,this study points out two key problems,i.e.,the two constants 7.5 and 1.69 in the formula are not applicable to all types of reservoir.Given this,this study establishes a function between key reservoir parameters and the first constant and another function between key reservoir parameters and recovery efficiency.Based on the established two functions and considering that different types of oil reservoir have different limit water cuts,this study develops an improved Tong's B-type formula and prepares the corresponding improved cross plot.The results of this study will improve the applicability and accuracy of Tong's B-type water drive method in predicting the trend of water cut increasing for different types of oil reservoirs.展开更多
With the production of strong bottom water reservoir, it will soon enter the ultra-high water cut stage. After entering the ultra-high water cut period, the main means of stable production is liquid extraction. Large ...With the production of strong bottom water reservoir, it will soon enter the ultra-high water cut stage. After entering the ultra-high water cut period, the main means of stable production is liquid extraction. Large liquid volume has a certain impact on the physical property distribution and fluid seepage law of the oilfield. The relative permeability curve measured according to the industry standard is not used for the prediction of development indicators and the understanding of the dynamic law of the oilfield. In order to understand the characteristics of water drive law in high water cut stage of water drive oilfield, starting from the water drive characteristic curve in high water cut stage, the method for calculating the relative permeability curve is deduced. Through numerical simulation verification and fitting the actual production data, it is confirmed that the obtained relative permeability curve is in line with the reality of the oilfield, It can provide some guiding significance for understanding the production law and water drive law of strong bottom water reservoir in ultra-high water cut stage.展开更多
In most literatures reservoir engineers usually claimed that oilfields are not identical to each other.To the author's experience on the type-curve matching work as mentioned above,it is not uncommon to find two f...In most literatures reservoir engineers usually claimed that oilfields are not identical to each other.To the author's experience on the type-curve matching work as mentioned above,it is not uncommon to find two fields exhibiting almost identical performances throughout their whole production life.In Fig.1,oil and water production figures of two well-known giant oilfields of former USSR-Romashkino(A)and Samotrol(B)are plo-tted together as Type-A curves with software“TWDTC".Surprisingly,nearly all the data points which covered 18-24 years of production history for both fields fell almost on one straight line.This implies that these two fields should have the same magnitude of active OOIP and in the same time,exercise similar waterflooding performance during their whole produciton life.展开更多
针对大深度环境水下发射技术需求,提出一种利用水压驱动两级提拉式水下新型发射方案。利用大深度环境高压水驱动两级活塞实现武器快速发射。建立武器出管过程动力学模型,开展高压水驱动方案原理验证试验,并与高压气体驱动方案进行了对...针对大深度环境水下发射技术需求,提出一种利用水压驱动两级提拉式水下新型发射方案。利用大深度环境高压水驱动两级活塞实现武器快速发射。建立武器出管过程动力学模型,开展高压水驱动方案原理验证试验,并与高压气体驱动方案进行了对比分析。研究结果表明:水压驱动与气体驱动方案的内弹道结果基本一致,高压水发射方案在大深度环境具有显著优势;加速度峰值出现在发射瞬时和级间转换过程,级间转换过程武器加速度存在显著的陡变现象;水下发射武器出管过程弹道预报结果得出,在发射水深100~500 m条件下,武器出管过程最大速度范围为7.4~15.3 m/s,最大加速度小于100 m/s 2;研究结果验证了水压驱动两级活塞式发射方案的可行性,为装置的进一步研制开发提供了设计依据。展开更多
文摘Tong's B-type water drive method was proposed as early as the 1970s and has been widely applied in the dynamic prediction and effective evaluation of oilfield development.Through extensive applications and studies,many researchers found that the statistical constants in the formula of the Tong's B-type water drive method(also referred to as the Tong's B-type formula)are not applicable to multiple types of reservoirs,especially low-permeability ones,due to the limited range of reservoir types when the formula was conceived.Moreover,they put forward suggestions to improve the Tong's B-type formula,most of which focused on the research and calculation of the first constant in the formula.For oilfields in the development stages of high or ultra-high water cuts,it is widely accepted that different types of reservoirs have different limit water cuts.This understanding naturally makes it necessary to further modify the Tong's B-type formula.It is practically significant to establish the water drive formula and cross plot considering that the two constants in the formula vary with reservoir type.By analyzing the derivation process and conditions of the Tong's B-type formula,this study points out two key problems,i.e.,the two constants 7.5 and 1.69 in the formula are not applicable to all types of reservoir.Given this,this study establishes a function between key reservoir parameters and the first constant and another function between key reservoir parameters and recovery efficiency.Based on the established two functions and considering that different types of oil reservoir have different limit water cuts,this study develops an improved Tong's B-type formula and prepares the corresponding improved cross plot.The results of this study will improve the applicability and accuracy of Tong's B-type water drive method in predicting the trend of water cut increasing for different types of oil reservoirs.
文摘With the production of strong bottom water reservoir, it will soon enter the ultra-high water cut stage. After entering the ultra-high water cut period, the main means of stable production is liquid extraction. Large liquid volume has a certain impact on the physical property distribution and fluid seepage law of the oilfield. The relative permeability curve measured according to the industry standard is not used for the prediction of development indicators and the understanding of the dynamic law of the oilfield. In order to understand the characteristics of water drive law in high water cut stage of water drive oilfield, starting from the water drive characteristic curve in high water cut stage, the method for calculating the relative permeability curve is deduced. Through numerical simulation verification and fitting the actual production data, it is confirmed that the obtained relative permeability curve is in line with the reality of the oilfield, It can provide some guiding significance for understanding the production law and water drive law of strong bottom water reservoir in ultra-high water cut stage.
文摘In most literatures reservoir engineers usually claimed that oilfields are not identical to each other.To the author's experience on the type-curve matching work as mentioned above,it is not uncommon to find two fields exhibiting almost identical performances throughout their whole production life.In Fig.1,oil and water production figures of two well-known giant oilfields of former USSR-Romashkino(A)and Samotrol(B)are plo-tted together as Type-A curves with software“TWDTC".Surprisingly,nearly all the data points which covered 18-24 years of production history for both fields fell almost on one straight line.This implies that these two fields should have the same magnitude of active OOIP and in the same time,exercise similar waterflooding performance during their whole produciton life.
文摘针对大深度环境水下发射技术需求,提出一种利用水压驱动两级提拉式水下新型发射方案。利用大深度环境高压水驱动两级活塞实现武器快速发射。建立武器出管过程动力学模型,开展高压水驱动方案原理验证试验,并与高压气体驱动方案进行了对比分析。研究结果表明:水压驱动与气体驱动方案的内弹道结果基本一致,高压水发射方案在大深度环境具有显著优势;加速度峰值出现在发射瞬时和级间转换过程,级间转换过程武器加速度存在显著的陡变现象;水下发射武器出管过程弹道预报结果得出,在发射水深100~500 m条件下,武器出管过程最大速度范围为7.4~15.3 m/s,最大加速度小于100 m/s 2;研究结果验证了水压驱动两级活塞式发射方案的可行性,为装置的进一步研制开发提供了设计依据。