In recent years, China has been faced by an increasingly severe water shortage due to the continual growth of demand on water resources. Although the Chinese government has been actively promoting the agricultural wat...In recent years, China has been faced by an increasingly severe water shortage due to the continual growth of demand on water resources. Although the Chinese government has been actively promoting the agricultural water-saving technology adoption, it is ill-informed of the adoption degree of the current agricultural watersaving technologies as well as the function of the governmental policies, Therefore, this paper" analyzes the aforesaid problems based on investigative data of 10 provinces in China. The results demonstrate that although there is a rapid increase of adopted agricultural water-saving technologies, the actual adoption area is rather limited. Moreover, the governmental policies and scarcity of water resources are the deierminants of agricultural water-saving technology adoption. Ultimately, the paper proposes some policy suggestions.展开更多
Agriculture is the biggest water user in China,and the development of agricultural water-saving has great significance to the national economy and social development. In this paper,the present situation of water used ...Agriculture is the biggest water user in China,and the development of agricultural water-saving has great significance to the national economy and social development. In this paper,the present situation of water used in agriculture irrigation and water-saving potential were analyzed,and the " bottleneck" and main problems existing in water-saving irrigation in China were discussed. From the aspects of engineering investment channels,agricultural water-saving policies and management system,reform of agricultural water price and water right transfer,improvement of farmers' water-saving consciousness,and promotion of rural land transfer,suggestions were proposed for the development of China's agricultural water-saving in future,which will provide a technical support for the sustainable use of agricultural water resources in China.展开更多
This paper introduces Israeli agricultural water price sharing system. According to Israeli agricultural water cost composition,water price sharing by farmers as well as government subsidy and its forms,the financial ...This paper introduces Israeli agricultural water price sharing system. According to Israeli agricultural water cost composition,water price sharing by farmers as well as government subsidy and its forms,the financial subsidy-based agricultural water price system has been established on the basis of the farmers' income in our country and reasonable water price sharing,thus to promote the development of water-saving agriculture in China.展开更多
Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurfa...Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurface drip irrigation (SDI) provides a potential solution to the problem of low water use efficiency. Other advantages of SDI include reduced NO3 leaching compared to surface irrigation, higher yields, a dry soil surface for improved weed control, better crop health, and harvest flexibility for many specialty crops. The use of SDI also allows the virtual elimination of crop water stress, the ability to apply water and nutrients to the most active part of the root zone, protection of drip lines from damage due to cultivation and tillage, and the ability to irrigate with wastewater while preventing human contact. Yet, SDI is used only on a minority of cropland in the arid western USA. Reasons for the limited adoption of SDI include the high initial capital investment required, the need for intensive management, and the urbanization that is rapidly consuming farmland in parts of the western USA. The contributions of SDI to increasing yield, quality, and water use efficiency have been demonstrated. The two major barriers to SDI sustainability in arid regions are economics (i.e., paying for the SDI system), including the high cost of installation; and salt accumulation, which requires periodic leaching, specialized tillage methods, or transplanting of seedlings rather than direct-seeding. We will review advances in irrigation management with SDI.展开更多
The development of water-saving agriculture is of great significance not only for increasing farmers’ production and income, but also for protecting water resources. The purpose of this paper is to learn from the exp...The development of water-saving agriculture is of great significance not only for increasing farmers’ production and income, but also for protecting water resources. The purpose of this paper is to learn from the experience of Israel, Japan, Korea and Singapore, improve the low efficiency of agricultural water use in China, and solve the problem of water shortage, promote the development of agriculture. This article concludes that the experience of water-saving agriculture in Israel is advanced irrigation technology, sound laws and regulations, and emphasis on science and technology. Japan’s water-saving agriculture is characterized by an efficient irrigation program and a strict agricultural water management policy. Korea’s experience in water-saving agriculture is that it has a strict water management system, with the government subsidizing the cost of irrigation projects and integrating water into agricultural development planning. Singapore’s experience in water-saving agriculture is to raise awareness of water conservation and to use step water prices. In order to promote the sustainable development of water-saving agriculture in China, the research on water-saving agriculture in the future can be carried out from the aspects of agricultural production or related agricultural technology.展开更多
This paper aims to analyze the research on the current situation of water-saving agriculture development in Europe. Water-saving agriculture in Europe started early, governments and farmers in various countries have a...This paper aims to analyze the research on the current situation of water-saving agriculture development in Europe. Water-saving agriculture in Europe started early, governments and farmers in various countries have a strong awareness of water-saving in agriculture and have achieved certain results. Due to the global spread of the COVID-19 pandemic, the lack of up-to-date field research, the complexity of various agricultural disciplines and categories, and the lack of information sharing, the current cognition of recent progress in the development of water-saving agriculture in Europe is not comprehensive enough. This paper selects four representative European countries: Spain, Germany, Italy, and Denmark as the research objects. Based on the existing research of Chinese and Western scholars, this paper analyzes and studies the current situation of water-saving agriculture in Europe. It has far-reaching significance for other countries in the world to have further development in water-saving agriculture and to protect water resources.展开更多
The paper analyzed the important role of water saving in protecting the food safety,introduced the present development of agricultural water-saving technique,pointed out the potential risks of water resources,and prop...The paper analyzed the important role of water saving in protecting the food safety,introduced the present development of agricultural water-saving technique,pointed out the potential risks of water resources,and proposed the future development of water-saving irrigation.展开更多
基金supported by International Water Management Institute (IWMI), Australian Bureau of agricultural and Resource Economics (ABARE), CAS Knowledge Innovation Program (Grant No. KSCX2-YW-N-039)National Natural Science Foundation of China (Grant No. 70733004).
文摘In recent years, China has been faced by an increasingly severe water shortage due to the continual growth of demand on water resources. Although the Chinese government has been actively promoting the agricultural water-saving technology adoption, it is ill-informed of the adoption degree of the current agricultural watersaving technologies as well as the function of the governmental policies, Therefore, this paper" analyzes the aforesaid problems based on investigative data of 10 provinces in China. The results demonstrate that although there is a rapid increase of adopted agricultural water-saving technologies, the actual adoption area is rather limited. Moreover, the governmental policies and scarcity of water resources are the deierminants of agricultural water-saving technology adoption. Ultimately, the paper proposes some policy suggestions.
基金Supported by the National Science and Technology Support Project in the "12th Five-Year Plan" Period of China(2014BAD12B04)Project for Young Science and Technology Innovation Talents in Agriculture in Liaoning Province,China(2015033)
文摘Agriculture is the biggest water user in China,and the development of agricultural water-saving has great significance to the national economy and social development. In this paper,the present situation of water used in agriculture irrigation and water-saving potential were analyzed,and the " bottleneck" and main problems existing in water-saving irrigation in China were discussed. From the aspects of engineering investment channels,agricultural water-saving policies and management system,reform of agricultural water price and water right transfer,improvement of farmers' water-saving consciousness,and promotion of rural land transfer,suggestions were proposed for the development of China's agricultural water-saving in future,which will provide a technical support for the sustainable use of agricultural water resources in China.
基金Supported by Provincial Water Conservancy Research and Technology Promotion Project:Research on Key Technical Problems of Farmland Water Conservancy Projects in Shandong Province(SDSLKY201401)
文摘This paper introduces Israeli agricultural water price sharing system. According to Israeli agricultural water cost composition,water price sharing by farmers as well as government subsidy and its forms,the financial subsidy-based agricultural water price system has been established on the basis of the farmers' income in our country and reasonable water price sharing,thus to promote the development of water-saving agriculture in China.
基金funded by 948 Program of Ministry of Agriculture, China (2006-G52)
文摘Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurface drip irrigation (SDI) provides a potential solution to the problem of low water use efficiency. Other advantages of SDI include reduced NO3 leaching compared to surface irrigation, higher yields, a dry soil surface for improved weed control, better crop health, and harvest flexibility for many specialty crops. The use of SDI also allows the virtual elimination of crop water stress, the ability to apply water and nutrients to the most active part of the root zone, protection of drip lines from damage due to cultivation and tillage, and the ability to irrigate with wastewater while preventing human contact. Yet, SDI is used only on a minority of cropland in the arid western USA. Reasons for the limited adoption of SDI include the high initial capital investment required, the need for intensive management, and the urbanization that is rapidly consuming farmland in parts of the western USA. The contributions of SDI to increasing yield, quality, and water use efficiency have been demonstrated. The two major barriers to SDI sustainability in arid regions are economics (i.e., paying for the SDI system), including the high cost of installation; and salt accumulation, which requires periodic leaching, specialized tillage methods, or transplanting of seedlings rather than direct-seeding. We will review advances in irrigation management with SDI.
文摘The development of water-saving agriculture is of great significance not only for increasing farmers’ production and income, but also for protecting water resources. The purpose of this paper is to learn from the experience of Israel, Japan, Korea and Singapore, improve the low efficiency of agricultural water use in China, and solve the problem of water shortage, promote the development of agriculture. This article concludes that the experience of water-saving agriculture in Israel is advanced irrigation technology, sound laws and regulations, and emphasis on science and technology. Japan’s water-saving agriculture is characterized by an efficient irrigation program and a strict agricultural water management policy. Korea’s experience in water-saving agriculture is that it has a strict water management system, with the government subsidizing the cost of irrigation projects and integrating water into agricultural development planning. Singapore’s experience in water-saving agriculture is to raise awareness of water conservation and to use step water prices. In order to promote the sustainable development of water-saving agriculture in China, the research on water-saving agriculture in the future can be carried out from the aspects of agricultural production or related agricultural technology.
文摘This paper aims to analyze the research on the current situation of water-saving agriculture development in Europe. Water-saving agriculture in Europe started early, governments and farmers in various countries have a strong awareness of water-saving in agriculture and have achieved certain results. Due to the global spread of the COVID-19 pandemic, the lack of up-to-date field research, the complexity of various agricultural disciplines and categories, and the lack of information sharing, the current cognition of recent progress in the development of water-saving agriculture in Europe is not comprehensive enough. This paper selects four representative European countries: Spain, Germany, Italy, and Denmark as the research objects. Based on the existing research of Chinese and Western scholars, this paper analyzes and studies the current situation of water-saving agriculture in Europe. It has far-reaching significance for other countries in the world to have further development in water-saving agriculture and to protect water resources.
文摘The paper analyzed the important role of water saving in protecting the food safety,introduced the present development of agricultural water-saving technique,pointed out the potential risks of water resources,and proposed the future development of water-saving irrigation.