As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal...As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.展开更多
In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highw...In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.展开更多
This research project investigates the current status of water supply, sanitation, and hygiene practices in Munshiganj District, Bangladesh. Data collection involved a structured questionnaire and a reconnaissance sur...This research project investigates the current status of water supply, sanitation, and hygiene practices in Munshiganj District, Bangladesh. Data collection involved a structured questionnaire and a reconnaissance survey. Findings reveal that 30% of individuals rely on surface water (hand-tube wells, rivers, and ponds), prioritized as canal > river > pond, while 70% depend on groundwater (subterranean electric motor, deep tube-well). Drinking water is generally sufficient, with 95% reporting adequacy throughout the year. About 45% use hand tube-well water, 28% use deep tube-well water, and 11% use supply tap water for various purposes. Bathing trends include underground water through electric motor > pond > hand tube-well water > river, while for cooking, the order is underground water through electric motor > pond > hand tube-well water > river. Toilet water supply ranks as supply tap water > hand tube-well water > deep tube-well water. Although sanitation awareness is high, some lack knowledge of good hygiene practices. After defecating, handwashing methods include soap, ash, soil, or water. Children’s waste disposal varies, with some discarding it in open areas. Approximately 40% suffer from diseases like Diarrhoea due to unsafe water, primarily affecting children and elders. Training exists, but a significant portion lacks sanitation education. Dry skin or exposure to cold water may cause temporary irritation. Local government involvement in sanitation efforts is less active compared to non-governmental organizations. Results emphasize the need to enhance community awareness of safe water supplies and sanitation practices. .展开更多
The quality and safety of residents’water rely heavily on the design of municipal water supply and drainage pipes.Therefore,this paper aims to enhance the optimization of municipal water supply and drainage pipe desi...The quality and safety of residents’water rely heavily on the design of municipal water supply and drainage pipes.Therefore,this paper aims to enhance the optimization of municipal water supply and drainage pipe design by focusing on design requirements,principles,and key elements.Drawing from relevant design optimization experiences,technology advancements,and optimization measures,the research will analyze and consolidate the essential aspects of municipal water supply and drainage pipe design.The goal is to fundamentally elevate the quality standards of these designs,ensuring they meet the criteria for engineering project excellence.Through this comprehensive approach,we aim to contribute to the improvement and sustainability of water supply and drainage systems,safeguarding the well-being of residents.展开更多
With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply...With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply and drainage system pipe network to effectively save energy while providing residents with more accessible water resources.Therefore,the municipal water supply and drainage system and the water transmission methods should be designed according to the geographical conditions of the city.In this paper,we mainly analyze the design of municipal water supply and drainage systems and the selection of water transmission methods.Besides,the optimization of the water supply and drainage network zoning process and pipe network maintenance is also discussed,so as to provide a reference for municipal water supply and drainage work.展开更多
[Objective] The aim was to study the effects of water supply and consumption on water saving and drought resistance. [Method] Controlling field experiment was conducted to explore water balance between supply and dema...[Objective] The aim was to study the effects of water supply and consumption on water saving and drought resistance. [Method] Controlling field experiment was conducted to explore water balance between supply and demand in paddy fields in hilly regions in Sichuan Province. [Result] Rainfall in hilly areas was 3 611.10 m3/hm2; water for irrigation was 6 299.25 m3/hm2; evapotranspiration of rice was 6 424.95 m3/hm2; deep leakage was 2 459.55 m3/hm2; overflowing amount was 1 026.00 m3/hm2. In addition, water consumption totaled 8 884.50 m3/hm2 during rice production; water use was 0.99 kg/m3 and use efficiency of irrigated water was 1.40 kg/m3. [Conclusion] Water supply and consumption should be further organized to save water and fight against drought in hilly areas in Sichuan Province.展开更多
[Objective] The purpose of this study is to estimate water supply and demand, which can provide a basis for how to allocate rationally water resources in Hotan Oasis. [Method] The water supply and demand in Hotan Oasi...[Objective] The purpose of this study is to estimate water supply and demand, which can provide a basis for how to allocate rationally water resources in Hotan Oasis. [Method] The water supply and demand in Hotan Oasis in the next15 years were calculated according to water-soil balance. [Result] When the runoff of Hotan River is at a probability of 50%(P=50 for short), the total water resource is 50.57×10^8m^3, and there is only 33.13×10^8m^3available for social and economics,but there would be a need of 33.44×10^8and 36.06×10^8m^3, and the water shortage would be 1.31 ×10^8and 2.93 ×10^8m^3in 2020 and 2030 respectively. When P =75,the total water resource is 44.30×10^8m^3, there is only 29.39×10^8m^3water available for social and economics. However, there would be a need of 31.43 ×10^8and33.11×10^8m^3, and the water shortage would be 2.04×10^8and 3.72×10^8m^3in 2020 and 2030, respectively. [Conclusion] The problem of water shortage would be serious over the next 15 years, and the fragile ecosystem would be destroyed dramatically with the large-scale land reclamation against natural laws. Hence, the effective policies and measures should be taken timely to prohibit reclamation and to cope with ongoing water shortage, based on the water supply and demand estimation under the background of climate change.展开更多
In this research, LINGO is used successfully to solve the water supply system′s optimal operation model. Firstly, the language of LINGO and the using method were studied intensively, on the basis of which the model w...In this research, LINGO is used successfully to solve the water supply system′s optimal operation model. Firstly, the language of LINGO and the using method were studied intensively, on the basis of which the model was transformed to LINGO form and solved successfully. Secondly, the research on the interface between LINGO and the popular office software was made. The optimization software was developed, which had Excel as the workspace and LINGO as the core of computation. Through practice, this software was found stable, easy to use and suitable for the application to the water supply corporations.展开更多
In view of the poor water supply system’s network properties, the system’s complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow ...In view of the poor water supply system’s network properties, the system’s complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow and water source head. By using pump-station pressure head and initial tank water levels as decision variables, the model of optimal allocation of water supply between pump-sources was developed. Genetic algorithm was introduced to deal with the model of optimal allocation of water supply. Methods for handling each constraint condition were put forward, and overcome the shortcoming such as premature convergence of genetic algorithm; a solving method was brought forward in which genetic algorithm was combined with simulated annealing technology and self-adaptive crossover and mutation probabilities were adopted. An application example showed the feasibility of this algorithm.展开更多
Due to pollution in second water supply system (SWSS),nine renovation alternative plans were proposed and com-prehensive evaluations of different plan based on Analytical Hierarchy Process (AHP) were presented in this...Due to pollution in second water supply system (SWSS),nine renovation alternative plans were proposed and com-prehensive evaluations of different plan based on Analytical Hierarchy Process (AHP) were presented in this paper. Comparisons of advantages and disadvantages among the plans of SWSS renovations provided solid foundation for selecting the most appro-priate plan for engineering projects. In addition,a mathematical model of the optimal combination of renovation plans has been set up and software Lingo was used to solve the model. As a case study,the paper analyzed 15 buildings in Tianjin City. After simulation of the SWSS renovation system,an optimal scheme was obtained,the result of which indicates that 10 out of those 15 buildings need be renovated in priority. The renovation plans selected for each building are the ones ranked higher in the com-prehensive analysis. The analysis revealed that the optimal scheme,compared with two other randomly calculated ones,increased the percentage of service population by 19.6% and 13.6% respectively,which significantly improved social and economical benefits.展开更多
In semiarid areas, cereal crops often alocate more biomass to root at the expense of aboveground yield. A pot experiment was conducted to investigate carbon consumption of roots and its impact on grain yield of spring...In semiarid areas, cereal crops often alocate more biomass to root at the expense of aboveground yield. A pot experiment was conducted to investigate carbon consumption of roots and its impact on grain yield of spring wheat (Triticum aestivum L.) as affected by water and phosphorus (P) supply. A factorial design was used with six treatments namely two water regimes (at 80–75% and 50–45% ifeld capacity (FC)) and three P supply rates (P1=0, P2=44 and P3=109 μg P g–1 soil). At shooting and lfowering stages, root respiration and carbon consumption increased with the elevate of P supply rates, regardless of water conditions, which achieved the minimum and maximum at P1 under 50–45% FC and P3 under 80–75% FC, respectively. However, total aboveground biomass and grain yield were higher at P2 under 80–75% FC; and decreased with high P application (P3). The results indicated that rational or low P supply (80–75% of ifeld water capacity and 44 mg P kg–1 soil) should be recommended to improve grain yield by decreasing root carbon consumption in semiarid areas.展开更多
Rural drinking water safety is a growing concern in China. This study investigated the health risk of pollution of groundwater for the drinking water supply in Mingshan County, Ya'an City, in Sichuan Province, China,...Rural drinking water safety is a growing concern in China. This study investigated the health risk of pollution of groundwater for the drinking water supply in Mingshan County, Ya'an City, in Sichuan Province, China, using 46 samples from the years 1991 to 2010. Carcinogenic, non-carcinogenic, and total risks were assessed by the model recommended by the United States Environmental Protection Agency (U.S. EPA). Thematic maps of the risks caused by single and multiple factors were generated from inverse distance weighting interpolation (IDW) and the geostatistical analysis functions of ArcGIS. The results show that the carcinogenic risks caused by chemicals in groundwater for drinking water supply are low, within the acceptable interval for risk management. However, non-carcinogenic risks are high and the number of sampling sites with risk values exceeding the standards amounted to 29. Non-carcinogenic risks of Cr6+, nitrate, fluoride, and Fe at sites 43, 46, 50, 64, 67, and 74 were the sources that caused high total health risk. This study reveals the risk level of groundwater quality and orders of treatment of pollutants, and provides a scientific basis for groundwater management in this area.展开更多
For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention....For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention. In this study, a water hammer protection scheme combined with an overflow surge tank and a regulating valve was developed. A mathematical model of the overflow surge tank was developed, and an analytical formula for the height of the overflow surge tank was derived. Furthermore, a practical water supply project was used to evaluate the feasibility of the combined protection scheme and analyze the sensitivity of valve regulation rules. The results showed that the combined protection scheme effectively reduced the height of the surge tank, lessened the difficulties related to construction, and reduced the necessary financial investment for the project. The two-stage closing rule articulated as fast first and then slow could minimize the overflow volume of the surge tank when the power failure occurred, while the two-stage opening rule articulated as slow first and then fast could be more conducive to the safety of the water supply system when the pump started up.展开更多
Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to sol...Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to solve the altered multi-objective optimization model. The introduction of NSGA-II into water supply network optimal rehabilitation problem solves the conflict between one fitness value of standard genetic algorithm (SGA) and multi-objectives of rehabilitation problem. And the uncertainties brought by using weight coefficients or punish functions in conventional methods are controlled. And also by in-troduction of artificial inducement mutation (AIM) operation, the convergence speed of population is accelerated;this operation not only improves the convergence speed, but also improves the rationality and feasibility of solutions.展开更多
Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance o...Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance of water supply and demand in the region was established, and the security of water resource was assessed, from which the results that the effects of unified management of water resources in the Heihe River basin between Gansu Province and Inner Mongolia on regional hydrology are significant with a decrease in water supply diverted from Heihe River and an increase in groundwater extracted. In addition, it was found that the groundwater level has been steadily decreasing due to over pumping and decrease in recharges. In present year (2003), the volume of potential groundwater in the irrigation districts is far small because of the groundwater overdraft; even in the particular regions, there is no availability of groundwater resources for use. By 2003, water supply is not sufficient to meet the water demand in the different irrigation districts, the sustainable development and utilization of water resources are not secured, and the water supply crisis occurs in Pingchuan irrigation district. Achieving water security for the sustainable development of society, agriculture, economy, industry, and livelihoods while maintaining or improving the abilities of the management and planning of water resources, determining of the reasonable percentage between water supply and groundwater utilization and water saving in agricultural irrigation are taken into account. If this does not occur, it is feared that the present performance of water development and planning may further aggravate the problem of scarcities of water resources and further damage the fragile ecological system.展开更多
The serviceability of water supply networks(WSNs)under seismic loads has significant importance for estimating the probable losses and the impact of diminished functionality on affected communities.The innovation pres...The serviceability of water supply networks(WSNs)under seismic loads has significant importance for estimating the probable losses and the impact of diminished functionality on affected communities.The innovation presented in this paper is suggesting a new strategy to evaluate the seismic serviceability of WSNs,utilizing their operational physical mechanism.On one hand,this method can obtain the seismic serviceability of each node as well as entire WSNs.On the other hand,this method can dynamically reflect the propagation of randomness from ground motions to WSNs.First,a finite element model is established to capture the seismic response of buried pipe networks,and a leakage model is suggested to obtain the leakage area of WSNs.Second,the transient flow analysis of WSNs with or without leakage is derived to obtain dynamic water flow and pressure.Third,the seismic serviceability of WSNs is analyzed based on the probability density evolution method(PDEM).Finally,the seismic serviceability of a real WSN in Mianzhu city is assessed to illustrate the method.The case study shows that randomness from the ground motions can obviously affect the leakage state and the probability density of the nodal head during earthquakes.展开更多
The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, ...The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, it would be necessary to establish a system of information management for the pipeline. The monitoring, calculating and analyzing functions of the system serve to give controlling instructions and safe operating rules to the automatic equipment and technician, making sure the resistance coefficient distribution along the pipeline is reasonable; the hydraulic state transition is smooth when operating conditions change or water supply accidents occur, avoiding the damage of water hammer. This paper covered the composition structures of the information management system of long-distance water transmission pipelines and the functions of the subsystems, and finally elaborated on the approaches and steps of building a mathematics model for the analysis of dynamic hydraulic status.展开更多
This paper deals with the use of optimal control techniques in large-scale water distribution networks. According to the network characteristics and actual state of the water supply system in China, the implicit model...This paper deals with the use of optimal control techniques in large-scale water distribution networks. According to the network characteristics and actual state of the water supply system in China, the implicit model, which may be solved by utilizing the hierarchical optimization method, is established. In special, based on the analyses of the water supply system containing variable-speed pumps, a software tool has been developed successfully. The application of this model to the city of Shenyang (China) is compared to experiential strategy. The results of this study show that the developed model is a very promising optimization method to control the large-scale water supply systems.展开更多
A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the ne...A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the new campus of Tianjin Polytechnic University(TPU),A couple of deep geothermal wells which are 2 300 m in depth were dug,Deep geothermal energy cascade utilization is achieved by two stages of plate heat exchangers(PHE) and two stages of water source heat pumps(WSHP).Shallow geothermal energy is used in assistant heating by two ground coupled heat pumps(GCHPs) with 580 vertical ground wells which are 120 m in depth.Solar thermal energy collected by vacuum tube arrays(VTAs) and geothermal energy are complementarily utilized to make domestic hot water.Superfluous solar energy can be stored in shallow soil for the GCHP utilization.The system can use fossil fuel thermal energy by two natural gas boilers(NGB) to assist in heating and making hot water.The heating energy efficiency was measured in the winter of 2010-2011.The coefficients of performance(COP) under different heating conditions are discussed.The performance of hot water production is tested in a local typical winter day and the solar thermal energy utilization factor is presented.The rusults show that the average system COP is 5.75 or 4.96 under different working conditions,and the typical solar energy utilization factor is 0.324.展开更多
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2021EEEVL0204 and 2018A02。
文摘As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.
基金funded by the China National Key Research and Development Program(No.2022YFC3003505)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB23Y01)+1 种基金the National Natural Science Foundation of China(No.52278540)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB22B28).
文摘In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.
文摘This research project investigates the current status of water supply, sanitation, and hygiene practices in Munshiganj District, Bangladesh. Data collection involved a structured questionnaire and a reconnaissance survey. Findings reveal that 30% of individuals rely on surface water (hand-tube wells, rivers, and ponds), prioritized as canal > river > pond, while 70% depend on groundwater (subterranean electric motor, deep tube-well). Drinking water is generally sufficient, with 95% reporting adequacy throughout the year. About 45% use hand tube-well water, 28% use deep tube-well water, and 11% use supply tap water for various purposes. Bathing trends include underground water through electric motor > pond > hand tube-well water > river, while for cooking, the order is underground water through electric motor > pond > hand tube-well water > river. Toilet water supply ranks as supply tap water > hand tube-well water > deep tube-well water. Although sanitation awareness is high, some lack knowledge of good hygiene practices. After defecating, handwashing methods include soap, ash, soil, or water. Children’s waste disposal varies, with some discarding it in open areas. Approximately 40% suffer from diseases like Diarrhoea due to unsafe water, primarily affecting children and elders. Training exists, but a significant portion lacks sanitation education. Dry skin or exposure to cold water may cause temporary irritation. Local government involvement in sanitation efforts is less active compared to non-governmental organizations. Results emphasize the need to enhance community awareness of safe water supplies and sanitation practices. .
文摘The quality and safety of residents’water rely heavily on the design of municipal water supply and drainage pipes.Therefore,this paper aims to enhance the optimization of municipal water supply and drainage pipe design by focusing on design requirements,principles,and key elements.Drawing from relevant design optimization experiences,technology advancements,and optimization measures,the research will analyze and consolidate the essential aspects of municipal water supply and drainage pipe design.The goal is to fundamentally elevate the quality standards of these designs,ensuring they meet the criteria for engineering project excellence.Through this comprehensive approach,we aim to contribute to the improvement and sustainability of water supply and drainage systems,safeguarding the well-being of residents.
文摘With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply and drainage system pipe network to effectively save energy while providing residents with more accessible water resources.Therefore,the municipal water supply and drainage system and the water transmission methods should be designed according to the geographical conditions of the city.In this paper,we mainly analyze the design of municipal water supply and drainage systems and the selection of water transmission methods.Besides,the optimization of the water supply and drainage network zoning process and pipe network maintenance is also discussed,so as to provide a reference for municipal water supply and drainage work.
文摘[Objective] The aim was to study the effects of water supply and consumption on water saving and drought resistance. [Method] Controlling field experiment was conducted to explore water balance between supply and demand in paddy fields in hilly regions in Sichuan Province. [Result] Rainfall in hilly areas was 3 611.10 m3/hm2; water for irrigation was 6 299.25 m3/hm2; evapotranspiration of rice was 6 424.95 m3/hm2; deep leakage was 2 459.55 m3/hm2; overflowing amount was 1 026.00 m3/hm2. In addition, water consumption totaled 8 884.50 m3/hm2 during rice production; water use was 0.99 kg/m3 and use efficiency of irrigated water was 1.40 kg/m3. [Conclusion] Water supply and consumption should be further organized to save water and fight against drought in hilly areas in Sichuan Province.
基金Supported by the National Basic Research Program of China(973 Program,2010CB955905)the Fund of Chengde Municipal Finance Bureau(CZ2013004)~~
文摘[Objective] The purpose of this study is to estimate water supply and demand, which can provide a basis for how to allocate rationally water resources in Hotan Oasis. [Method] The water supply and demand in Hotan Oasis in the next15 years were calculated according to water-soil balance. [Result] When the runoff of Hotan River is at a probability of 50%(P=50 for short), the total water resource is 50.57×10^8m^3, and there is only 33.13×10^8m^3available for social and economics,but there would be a need of 33.44×10^8and 36.06×10^8m^3, and the water shortage would be 1.31 ×10^8and 2.93 ×10^8m^3in 2020 and 2030 respectively. When P =75,the total water resource is 44.30×10^8m^3, there is only 29.39×10^8m^3water available for social and economics. However, there would be a need of 31.43 ×10^8and33.11×10^8m^3, and the water shortage would be 2.04×10^8and 3.72×10^8m^3in 2020 and 2030, respectively. [Conclusion] The problem of water shortage would be serious over the next 15 years, and the fragile ecosystem would be destroyed dramatically with the large-scale land reclamation against natural laws. Hence, the effective policies and measures should be taken timely to prohibit reclamation and to cope with ongoing water shortage, based on the water supply and demand estimation under the background of climate change.
文摘In this research, LINGO is used successfully to solve the water supply system′s optimal operation model. Firstly, the language of LINGO and the using method were studied intensively, on the basis of which the model was transformed to LINGO form and solved successfully. Secondly, the research on the interface between LINGO and the popular office software was made. The optimization software was developed, which had Excel as the workspace and LINGO as the core of computation. Through practice, this software was found stable, easy to use and suitable for the application to the water supply corporations.
基金Project (No. 50078048) supported by the National Natural Science Foundation of China
文摘In view of the poor water supply system’s network properties, the system’s complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow and water source head. By using pump-station pressure head and initial tank water levels as decision variables, the model of optimal allocation of water supply between pump-sources was developed. Genetic algorithm was introduced to deal with the model of optimal allocation of water supply. Methods for handling each constraint condition were put forward, and overcome the shortcoming such as premature convergence of genetic algorithm; a solving method was brought forward in which genetic algorithm was combined with simulated annealing technology and self-adaptive crossover and mutation probabilities were adopted. An application example showed the feasibility of this algorithm.
基金Project (No.033113111) supported by Tianjin Science Association Key Project,China
文摘Due to pollution in second water supply system (SWSS),nine renovation alternative plans were proposed and com-prehensive evaluations of different plan based on Analytical Hierarchy Process (AHP) were presented in this paper. Comparisons of advantages and disadvantages among the plans of SWSS renovations provided solid foundation for selecting the most appro-priate plan for engineering projects. In addition,a mathematical model of the optimal combination of renovation plans has been set up and software Lingo was used to solve the model. As a case study,the paper analyzed 15 buildings in Tianjin City. After simulation of the SWSS renovation system,an optimal scheme was obtained,the result of which indicates that 10 out of those 15 buildings need be renovated in priority. The renovation plans selected for each building are the ones ranked higher in the com-prehensive analysis. The analysis revealed that the optimal scheme,compared with two other randomly calculated ones,increased the percentage of service population by 19.6% and 13.6% respectively,which significantly improved social and economical benefits.
基金supported by National Natural Science Foundation of China(61233004,61221003,61374109,61104091,61304078,61473184)National Basic Research Program of China(973 Program)(2013CB035500)+2 种基金the International Cooperation Program of Shanghai Science and Technology Commission(12230709600)the Higher Education Research Fund for the Doctoral Program of China(20120073130006,20110073110018)the China Postdoctoral Science Foundation(2013M540364)
基金supported by the National Nature Science Foundation of China (31300328, 31200335, 31470496)the "111" Program from State Administration of Foreign Experts Affairs (SAFEA) & Ministry of Education (MOE), China (2007B051)+1 种基金the Fundamental Research Funds for the Central Universities, China (lzujbky-2012-97, lzujbky-2015-ct02, lzujbky-2016-86)the funding from the State Key Laboratory of Grassland Agro-ecosystem in Lanzhou University, China
文摘In semiarid areas, cereal crops often alocate more biomass to root at the expense of aboveground yield. A pot experiment was conducted to investigate carbon consumption of roots and its impact on grain yield of spring wheat (Triticum aestivum L.) as affected by water and phosphorus (P) supply. A factorial design was used with six treatments namely two water regimes (at 80–75% and 50–45% ifeld capacity (FC)) and three P supply rates (P1=0, P2=44 and P3=109 μg P g–1 soil). At shooting and lfowering stages, root respiration and carbon consumption increased with the elevate of P supply rates, regardless of water conditions, which achieved the minimum and maximum at P1 under 50–45% FC and P3 under 80–75% FC, respectively. However, total aboveground biomass and grain yield were higher at P2 under 80–75% FC; and decreased with high P application (P3). The results indicated that rational or low P supply (80–75% of ifeld water capacity and 44 mg P kg–1 soil) should be recommended to improve grain yield by decreasing root carbon consumption in semiarid areas.
基金supported by the Key Project Fund of the Sichuan Education Department (Grant No. 09ZA063),the Education Reform Project Fund of the Sichuan Education Department (Grant No. P09150)the National Innovative Project for College Students (Grant No. 00509204)the Youth Science and Technology Innovation Fund of Sichuan Agricultural University (Grant No. 00530300),the Talent Introduction Fund of Sichuan Agricultural University (Grant No. 00530301),and the Double-Support Plan of Sichuan Agricultural University (Grant No. 00570103)
文摘Rural drinking water safety is a growing concern in China. This study investigated the health risk of pollution of groundwater for the drinking water supply in Mingshan County, Ya'an City, in Sichuan Province, China, using 46 samples from the years 1991 to 2010. Carcinogenic, non-carcinogenic, and total risks were assessed by the model recommended by the United States Environmental Protection Agency (U.S. EPA). Thematic maps of the risks caused by single and multiple factors were generated from inverse distance weighting interpolation (IDW) and the geostatistical analysis functions of ArcGIS. The results show that the carcinogenic risks caused by chemicals in groundwater for drinking water supply are low, within the acceptable interval for risk management. However, non-carcinogenic risks are high and the number of sampling sites with risk values exceeding the standards amounted to 29. Non-carcinogenic risks of Cr6+, nitrate, fluoride, and Fe at sites 43, 46, 50, 64, 67, and 74 were the sources that caused high total health risk. This study reveals the risk level of groundwater quality and orders of treatment of pollutants, and provides a scientific basis for groundwater management in this area.
基金supported by the National Natural Science Foundation of China(Grants No.52179062 and 51879087).
文摘For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention. In this study, a water hammer protection scheme combined with an overflow surge tank and a regulating valve was developed. A mathematical model of the overflow surge tank was developed, and an analytical formula for the height of the overflow surge tank was derived. Furthermore, a practical water supply project was used to evaluate the feasibility of the combined protection scheme and analyze the sensitivity of valve regulation rules. The results showed that the combined protection scheme effectively reduced the height of the surge tank, lessened the difficulties related to construction, and reduced the necessary financial investment for the project. The two-stage closing rule articulated as fast first and then slow could minimize the overflow volume of the surge tank when the power failure occurred, while the two-stage opening rule articulated as slow first and then fast could be more conducive to the safety of the water supply system when the pump started up.
基金the Natural Science Key Foundation of Heilongjiang Province of China (No. ZJG0503) China-UK Sci-ence Network from Royal Society UK
文摘Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to solve the altered multi-objective optimization model. The introduction of NSGA-II into water supply network optimal rehabilitation problem solves the conflict between one fitness value of standard genetic algorithm (SGA) and multi-objectives of rehabilitation problem. And the uncertainties brought by using weight coefficients or punish functions in conventional methods are controlled. And also by in-troduction of artificial inducement mutation (AIM) operation, the convergence speed of population is accelerated;this operation not only improves the convergence speed, but also improves the rationality and feasibility of solutions.
基金This work was supported by the Knowledge Innovation Program from the Cold and Add Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (CACX2003102)the Chinese Academy of Sciences (KZCX 1 - 10-03-01)the National Natural Science Foundation of China (40401012).
文摘Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance of water supply and demand in the region was established, and the security of water resource was assessed, from which the results that the effects of unified management of water resources in the Heihe River basin between Gansu Province and Inner Mongolia on regional hydrology are significant with a decrease in water supply diverted from Heihe River and an increase in groundwater extracted. In addition, it was found that the groundwater level has been steadily decreasing due to over pumping and decrease in recharges. In present year (2003), the volume of potential groundwater in the irrigation districts is far small because of the groundwater overdraft; even in the particular regions, there is no availability of groundwater resources for use. By 2003, water supply is not sufficient to meet the water demand in the different irrigation districts, the sustainable development and utilization of water resources are not secured, and the water supply crisis occurs in Pingchuan irrigation district. Achieving water security for the sustainable development of society, agriculture, economy, industry, and livelihoods while maintaining or improving the abilities of the management and planning of water resources, determining of the reasonable percentage between water supply and groundwater utilization and water saving in agricultural irrigation are taken into account. If this does not occur, it is feared that the present performance of water development and planning may further aggravate the problem of scarcities of water resources and further damage the fragile ecological system.
基金National Natural Science Foundation of China under Grant No.5210082055China Postdoctoral Science Foundation under Grant No.2021M690278。
文摘The serviceability of water supply networks(WSNs)under seismic loads has significant importance for estimating the probable losses and the impact of diminished functionality on affected communities.The innovation presented in this paper is suggesting a new strategy to evaluate the seismic serviceability of WSNs,utilizing their operational physical mechanism.On one hand,this method can obtain the seismic serviceability of each node as well as entire WSNs.On the other hand,this method can dynamically reflect the propagation of randomness from ground motions to WSNs.First,a finite element model is established to capture the seismic response of buried pipe networks,and a leakage model is suggested to obtain the leakage area of WSNs.Second,the transient flow analysis of WSNs with or without leakage is derived to obtain dynamic water flow and pressure.Third,the seismic serviceability of WSNs is analyzed based on the probability density evolution method(PDEM).Finally,the seismic serviceability of a real WSN in Mianzhu city is assessed to illustrate the method.The case study shows that randomness from the ground motions can obviously affect the leakage state and the probability density of the nodal head during earthquakes.
基金Hi-Tech Research and Development Program of China (863 Program)(2002AA601140)
文摘The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, it would be necessary to establish a system of information management for the pipeline. The monitoring, calculating and analyzing functions of the system serve to give controlling instructions and safe operating rules to the automatic equipment and technician, making sure the resistance coefficient distribution along the pipeline is reasonable; the hydraulic state transition is smooth when operating conditions change or water supply accidents occur, avoiding the damage of water hammer. This paper covered the composition structures of the information management system of long-distance water transmission pipelines and the functions of the subsystems, and finally elaborated on the approaches and steps of building a mathematics model for the analysis of dynamic hydraulic status.
基金This work has been partly funded by the National Natural Science Foundation of China(No.50078048).
文摘This paper deals with the use of optimal control techniques in large-scale water distribution networks. According to the network characteristics and actual state of the water supply system in China, the implicit model, which may be solved by utilizing the hierarchical optimization method, is established. In special, based on the analyses of the water supply system containing variable-speed pumps, a software tool has been developed successfully. The application of this model to the city of Shenyang (China) is compared to experiential strategy. The results of this study show that the developed model is a very promising optimization method to control the large-scale water supply systems.
基金Project(2010DFA72740-06) supported by International Science & Technology Cooperation Program of China
文摘A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the new campus of Tianjin Polytechnic University(TPU),A couple of deep geothermal wells which are 2 300 m in depth were dug,Deep geothermal energy cascade utilization is achieved by two stages of plate heat exchangers(PHE) and two stages of water source heat pumps(WSHP).Shallow geothermal energy is used in assistant heating by two ground coupled heat pumps(GCHPs) with 580 vertical ground wells which are 120 m in depth.Solar thermal energy collected by vacuum tube arrays(VTAs) and geothermal energy are complementarily utilized to make domestic hot water.Superfluous solar energy can be stored in shallow soil for the GCHP utilization.The system can use fossil fuel thermal energy by two natural gas boilers(NGB) to assist in heating and making hot water.The heating energy efficiency was measured in the winter of 2010-2011.The coefficients of performance(COP) under different heating conditions are discussed.The performance of hot water production is tested in a local typical winter day and the solar thermal energy utilization factor is presented.The rusults show that the average system COP is 5.75 or 4.96 under different working conditions,and the typical solar energy utilization factor is 0.324.