The chemical composition of acid rain and its impact on lake water chemistry in Chongqing,China,from 2000 to 2020 were studied in this study.The regional acid rain intensity is affected jointly by the acid gas emissio...The chemical composition of acid rain and its impact on lake water chemistry in Chongqing,China,from 2000 to 2020 were studied in this study.The regional acid rain intensity is affected jointly by the acid gas emissions and the neutralization of alkaline substances.The pH of precipitation experienced three stages of fluctuating decline,continuous improvement,and a slight correction.Precipitation pH showed inflection points in 2010,mainly due to the total control actions of SO_(2)and NO_(x)implemented in 2011.The total ion concentrations in rural areas and urban areas were 489.08μeq/L and 618.57μeq/L,respectively.The top four ions were SO_(4)^(2-),Ca^(2+),NH_(4)^(+)and NO_(3)^(-),which accounted for more than 90%of the total ion concentration,indicating the anthropogenic effects.Before 2010,SO_(4)^(2-)fluctuated greatly while NO_(3)^(-)continued to rise;however,after 2010,both SO_(4)^(2-)and NO_(3)^(-)began to decline rapidly,with the rates of-12.03μeq/(L·year)and-4.11μeq/(L·year).Because the decline rate of SO_(4)^(2-)was 2.91 times that of NO_(3)^(-),the regional acid rain has changed from sulfuric acid rain to mixed sulfuric and nitric acid rain.The lake water is weakly acidic,with an average pH of 5.86,and the acidification frequency is 30.00%.Acidification of lake water is jointly affected by acid deposition and acid neutralization capacity of lake water.Acid deposition has a profound impact on water acidification,and nitrogen(N)deposition,especially reduced N deposition,should be the focus of future research.展开更多
基金supported by the Chongqing Science and Technology Commission Project(No.CSTB2022NSCQ-MSX0818)。
文摘The chemical composition of acid rain and its impact on lake water chemistry in Chongqing,China,from 2000 to 2020 were studied in this study.The regional acid rain intensity is affected jointly by the acid gas emissions and the neutralization of alkaline substances.The pH of precipitation experienced three stages of fluctuating decline,continuous improvement,and a slight correction.Precipitation pH showed inflection points in 2010,mainly due to the total control actions of SO_(2)and NO_(x)implemented in 2011.The total ion concentrations in rural areas and urban areas were 489.08μeq/L and 618.57μeq/L,respectively.The top four ions were SO_(4)^(2-),Ca^(2+),NH_(4)^(+)and NO_(3)^(-),which accounted for more than 90%of the total ion concentration,indicating the anthropogenic effects.Before 2010,SO_(4)^(2-)fluctuated greatly while NO_(3)^(-)continued to rise;however,after 2010,both SO_(4)^(2-)and NO_(3)^(-)began to decline rapidly,with the rates of-12.03μeq/(L·year)and-4.11μeq/(L·year).Because the decline rate of SO_(4)^(2-)was 2.91 times that of NO_(3)^(-),the regional acid rain has changed from sulfuric acid rain to mixed sulfuric and nitric acid rain.The lake water is weakly acidic,with an average pH of 5.86,and the acidification frequency is 30.00%.Acidification of lake water is jointly affected by acid deposition and acid neutralization capacity of lake water.Acid deposition has a profound impact on water acidification,and nitrogen(N)deposition,especially reduced N deposition,should be the focus of future research.