On the basis of information from the project "Land-surface Processes and their Experimental Study on the Chinese Loess Plateau", we analyzed differences in land-surface water and heat processes during the main dry a...On the basis of information from the project "Land-surface Processes and their Experimental Study on the Chinese Loess Plateau", we analyzed differences in land-surface water and heat processes during the main dry and wet periods of the semiarid grassland growing season in Yuzhong County, as well as the influences of these environmental factors. Studies have shown that there are significant differences in changes of land-surface temperature and humidity during dry and wet periods. Daily average normalized temperature has an overall vertical distribution of "forward tilting" and "backward tilting" during dry and wet periods, respectively. During the dry period, shallow soil above 20-cm depth is the active temperature layer. The heat transfer rate in soil is obviously different during dry and wet periods. During the dry period, the ratio of sensible heat flux to net radiation (H/Rn) and the value of latent heat flux to net radiation (LE/Rn) have a linear relationship with 5-cm soil temperature; during the wet period, these have a nonlinear relationship with 5-cm soil temperature, and soil temperature of 16℃ is the critical temperature for changes in the land-surface water and heat exchange trend on a daily scale. During the dry period, H/Rn and LE/Rn have a linear relationship with soil water content. During the wet period, these have a nonlinear relationship with 5-cm soil water content, and 0.21 m^3 m^-3 is the critical point for changes in the land-surface water and heat exchange trend at daily scale. During the dry period, for vapor pressure deficit less than 0.7 kPa, H/Rn rises with increased vapor pressure deficit, whereas LEIRn decreases with that increase. When that deficit is greater than 0.7 kPa, both H/Rn and LE/Rn tend to be constant. During the wet period, H/Rn increases with the vapor pressure deficit, whereas LE/Rn decreases. The above characteristics directly reflect the effect of differences in land-surface environmental factors during land-surface water and heat exchange processes, and indirectly reflect the influences of cloud precipitation processes on those processes.展开更多
基金supported by the National Basic Research Program of China(Grant No.2013CB430206,2012CB955304)National Natural Science Foundation of China(Grant Nos.41075008,40830957,41275118)+2 种基金China Postdoctoral Science Special Foundation(Grant No.2013T60901)China Postdoctoral Science Foundation(Grant No.20110490854)the Ten Talents Program of Gansu Meteorology Bureau
文摘On the basis of information from the project "Land-surface Processes and their Experimental Study on the Chinese Loess Plateau", we analyzed differences in land-surface water and heat processes during the main dry and wet periods of the semiarid grassland growing season in Yuzhong County, as well as the influences of these environmental factors. Studies have shown that there are significant differences in changes of land-surface temperature and humidity during dry and wet periods. Daily average normalized temperature has an overall vertical distribution of "forward tilting" and "backward tilting" during dry and wet periods, respectively. During the dry period, shallow soil above 20-cm depth is the active temperature layer. The heat transfer rate in soil is obviously different during dry and wet periods. During the dry period, the ratio of sensible heat flux to net radiation (H/Rn) and the value of latent heat flux to net radiation (LE/Rn) have a linear relationship with 5-cm soil temperature; during the wet period, these have a nonlinear relationship with 5-cm soil temperature, and soil temperature of 16℃ is the critical temperature for changes in the land-surface water and heat exchange trend on a daily scale. During the dry period, H/Rn and LE/Rn have a linear relationship with soil water content. During the wet period, these have a nonlinear relationship with 5-cm soil water content, and 0.21 m^3 m^-3 is the critical point for changes in the land-surface water and heat exchange trend at daily scale. During the dry period, for vapor pressure deficit less than 0.7 kPa, H/Rn rises with increased vapor pressure deficit, whereas LEIRn decreases with that increase. When that deficit is greater than 0.7 kPa, both H/Rn and LE/Rn tend to be constant. During the wet period, H/Rn increases with the vapor pressure deficit, whereas LE/Rn decreases. The above characteristics directly reflect the effect of differences in land-surface environmental factors during land-surface water and heat exchange processes, and indirectly reflect the influences of cloud precipitation processes on those processes.