The low field nuclear magnetic resonance (NMR), as a nondestructive and noninvasive technique, was employed to investigate the water distribution and content in cement paste with different water-to-cement ratio (w/c r...The low field nuclear magnetic resonance (NMR), as a nondestructive and noninvasive technique, was employed to investigate the water distribution and content in cement paste with different water-to-cement ratio (w/c ratio) during early and later hydration stages. From the water distribution spectrum deduced from relaxation time distribution in paste, it is suggested that the water fills in the capillary pores at initial period, and then diffuses to the mesopores and gel pores in hydration products with the hydration proceeding. The decrease of peak area in water distribution spectrum reflects the transformation from physically bound water to chemically bound water. In addition, based on the connection between relaxation time and pore size, the relative content changes of water in various states and constrained in different types of pores were also measured. The results demonstrate that it is influenced by the formation of pore system and the original water-to-cement ratio in the paste. Consequently, the relative content of capillary water is dropped to less than 2% in the paste with low w/c ratio of 0.3 when being hydrated for 1 d, while the contents are still 16% and 36% in the pastes with w/c ratios of 0.4 and 0.5, respectively.展开更多
A simple hydration model is used here by taking the composition of the cement and the initial water: cementratio (w/c) into account explicitly. Its conceptual basis is a combination of the Avrami equation and Bentz’s...A simple hydration model is used here by taking the composition of the cement and the initial water: cementratio (w/c) into account explicitly. Its conceptual basis is a combination of the Avrami equation and Bentz’s modelbased on simple spatial considerations. In this model, the Avrami equation determines the initial reaction, andBentz’s model describes the following hydration stage. The model favors engineers for it relies on one experimentalparameter and has a reliable approximation in the practice.展开更多
The capillary absorption of water by unsaturated cement-based material is the main reason of degradation of the structures subjected to an aggressive environment since water often acts as the transporting medium for d...The capillary absorption of water by unsaturated cement-based material is the main reason of degradation of the structures subjected to an aggressive environment since water often acts as the transporting medium for damaging contaminants. It is well known that the capillarity coefficient and sorptivity are two important parameters to characterize the water absorption of porous materials. Generally, the former is used to describe the penetration depth or height of water transport, which must be measured by special and advanced equipment. In contrast, the sorptivity represents the relationship between cumulative volume of water uptake and the squareroot of the elapsed time, which can be easily measured by the gravimetric method in a normal laboratory condition. In the present study, an analytical method is developed to build up a bridge between these two parameters, with the purpose that the sorptivity or the gravimetric method can be used to predict the penetration depth of water absorption. Additionally, a new model to explain the dependence of sorptivity on initial water content of the material is developed in order to fit the in situ condition. The comparison of predicted results by the analytical method with experimental data or numerical calculation results, as well as some previous models, validates the feasibility of the methods presented in this paper.展开更多
A new type of high water content material which is made up of two pastes is prepared, one is refute from lime and gypsum, and another is based on Ba-bearing sulphoaluminate cement. It has excellent properties such as ...A new type of high water content material which is made up of two pastes is prepared, one is refute from lime and gypsum, and another is based on Ba-bearing sulphoaluminate cement. It has excellent properties such as slow single paste solidifing ,fust double pustes solidifing ,fast coagulating and hardening, high early strength, good suspeasion property at high W/C ratio and low cost. Meanwhile, the properties and hydration mechanism of the material were analyzed by using XRD, DTA- TG and SEM. The hydrated products of new type of high water content material are Ba-bearing ettringite, BaSO4 , aluminum gel and C-S-H gel.展开更多
By incorporation of fly ash or silica fume into magnesium oxychloride (MOC) cement, a high water resistance material can be formed for successful industrial applications. The influences of fly ash and silica fume on...By incorporation of fly ash or silica fume into magnesium oxychloride (MOC) cement, a high water resistance material can be formed for successful industrial applications. The influences of fly ash and silica fume on water-resistant property were investigated by SEM and EDS. It is found that the incorporation of fly ash or silica fume can improve the water-resistance of the MOC. The improvement of the water resistance of the MOC incorporated with fly ash or silica fume may be attributed to the alumino-silicate 5·1·8 gel or silicate 5·1·8 gel.展开更多
The effects of specimen size and shape on development of water loss and shrinkage of mortar and concrete respectively were investigated. The experimental results showed that the effects of specimen size and shape on w...The effects of specimen size and shape on development of water loss and shrinkage of mortar and concrete respectively were investigated. The experimental results showed that the effects of specimen size and shape on water loss ratio were consistent with those on drying shrinkage strain. It is also indicated that drying shrinkage strain has obvious linear correlation with water loss ratios independent of specimen size and shape. The effects of specimen size and shape on the water loss ratio were embodied in established model of averaged relative humidity improved by considering effects of sequential hydration and calculated by finite difference method. Furthermore, the effects of specimen size and shape on drying shrinkage strain of concrete were experimentally deduced and applied to modify criterion EB-FIP1990. The comparison between experimental and calculated results shows that the modified EB-FIP1990 can be adopted to predict drying shrinkage strain of concrete with reasonable accuracy.展开更多
In this study, water permeation through cementitious materials was observed using magnetic resonance imaging (MRI). The influence of cement type on the magnetic resonance signal was studied subsequent to determining t...In this study, water permeation through cementitious materials was observed using magnetic resonance imaging (MRI). The influence of cement type on the magnetic resonance signal was studied subsequent to determining the parameters required for imaging. Consequently, adequate imaging of water permeating through hardened cement paste (HCP) made with white Portland cement was achieved, while water permeation through ordinary Portland cement-based HCP yielded poor signal. HCPs maintained at various levels of relative humidity (RH) were observed, and the signal was detected only from those maintained at an RH of higher than 85%. The water permeation depths in HCP were observed by using MRI, and the measured depths were compared to those measured via a spraying water detector on the split surface of the specimens. As a result, good agreement was confirmed between the two methods. Additionally, MRI was applied to concrete specimens;although it was found that water was not detected when a lightweight aggregate was used, water permeation through concrete with limestone aggregate was detectable via MRI. MRI will help in understanding how water permeation causes and accelerates concrete deteriorations such as rebar corrosion and freezing and thawing.展开更多
In this paper .the change of the crystalline phases in hardened magnesium oxychloride cement (MOC) paste in mater was analyzed by XRD. It was developed that the reaction products 5 phase or 3 phase of MOC are instable...In this paper .the change of the crystalline phases in hardened magnesium oxychloride cement (MOC) paste in mater was analyzed by XRD. It was developed that the reaction products 5 phase or 3 phase of MOC are instable in water and can be changed into Mg(OH)2 by the action of water, which causes the content of 5 phase or 3 phase to be less and less,the content of Mg(OH)2 to be more and more and the strength to be the lower the lower,after hardended MOC paste was immersed in water. The change of 5 pliase and 3 phase into Mg(OH)2 is not a dissolve process, but a hydrolysis process. The hydrolysis products of 5 phase and 3 phase are Mg(OH)2 precipitation and soluble Cl-,AIg+ ions and H2O. The hydrolysis is sponta-neous thermodynamically and its chemical kinatic equation is C = C,,e-k Thus .it is suggested that only by enhancing the stability of 5 phase or 3 phase in water and preventing 5 phase or 3 phase from the hydrolyzing can the water resistance of MOC be improved well.展开更多
Water addition has direct impact on castables and needs to be under control placement and properties, In this work, two rheological properties, flow resistance and torque viscosity, have been measured against time, wi...Water addition has direct impact on castables and needs to be under control placement and properties, In this work, two rheological properties, flow resistance and torque viscosity, have been measured against time, with different water addition in the same bauxile-based LC Castable mix. The flow resistance indicates the mobility, whereas the torque viscosity dictates the stability of a castable during installation. It has been observed that with 6.0wt% water addition, such a mix possesses good vibration castable characteristics; with 6.5 wt%, it shows good self-flow castable characteristics; and with 7.0 wt%, it can be a good pumpable castable, in every case with comparable mechanical properties. While with 7.5 wt% water addition, the properties of such castable are definitively impaired.展开更多
The development of strength and the form of attack of cement-based material made of limestone powder at low water-binder ratio under low-temperature sulfate environment were studied. The results indicate that when wat...The development of strength and the form of attack of cement-based material made of limestone powder at low water-binder ratio under low-temperature sulfate environment were studied. The results indicate that when water-binder ratio is lower than 0.40, the cement-based material with limestone powder has insignificant change in appearance after being soaked in 10% magnesium sulfate solution at low temperature for 120 d, and has significant change in appearance after being soaked at the age of 200 d. Expansion damage and exfoliation occur on the surface of concrete test cube at different levels. When limestone powder accounts for about 28 percent of cementitious material, with the decrease of water-binder ratio, the compressive strength loss has gradually decreased after the material is soaked in the magnesium sulfate solution at low temperature at the age of 200 d. After the specimen with the water-binder ratio of less than 0.4 and the limestone powder volume of greater than 20% is soaked in 10% magnesium sulfate solution at low temperature at the age of 200 d, gypsum attack-led destruction is caused to the concrete test cube, without thaumasite sulfate attack.展开更多
The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregat...The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregate and matrix in concrete was analyzed by using a micro-hardness tester, a laser confocal microscope and a scanning electron microscope with backscattered electron image mode. The pore structure of mortar matrixes under different curing conditions was investigated by mercury intrusion porosimetry. The results showed that when natural aggregates were replaced with air-cooled blast furnace slag aggregates in mortar or concrete, the content of the capillary pore in the mortar matrix was reduced and the interfacial structure between aggregate and matrix was improved, resulting in the lower water absorption of mortar or concrete. Compared to the concrete made with crushed limestone and natural river sand, the initial absorption coefficient, the secondary absorption coefficient and the water absorption capacity through the surface for 7 d of the concrete made from crushed air-cooled blast furnace slag and air-cooled blast furnace slag sand were reduced by 48.9%, 52.8%, and 46.5%, respectively.展开更多
The influence of water content on the conductivity and piezoresistivity of cement-based material with carbon fiber (CF) and carbon black (CB) was investigated. The piezoresistivity of cement-based material with bo...The influence of water content on the conductivity and piezoresistivity of cement-based material with carbon fiber (CF) and carbon black (CB) was investigated. The piezoresistivity of cement-based material with both CF and CB was compared with that of cement-based material with CF only, and the changes in electrical resistivity of cement-based material with both CF and CB under static and loading conditions in different drying and soaking time were studied. It is found that the piezoresistivity of cement-based material with both CF and CB has better repeatability and linearity than that of cement-based material with CF only. The conductivity and the sensitivity of piezoresistive cement-based material with both CF and CB are enhanced as the water content in piezoresistive cement-based material increases.展开更多
Water samples were collected from three stations along the water course of Oinyi River, Kogi State, Nigeria, bi-monthly for 12 months (October 2010 to September 2011). A total of 16 physical and chemical parameters (t...Water samples were collected from three stations along the water course of Oinyi River, Kogi State, Nigeria, bi-monthly for 12 months (October 2010 to September 2011). A total of 16 physical and chemical parameters (temperature, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, electrical conductivity, flow velocity, depth, nitrate, nitrite, phosphate, ammonia, pH, turbidity, total suspended solids, total dissolved solids and colour) were analyzed and results showed that pH (6.8 to 7.26), conductivity (106.0 to 211.7 μS/cm), colour (3.87 ± 0.159 Pt.Co), turbidity (14 - 22.7 NTU), total suspended solids (45 - 54 mg/l), biochemical oxygen demand (2.05 - 2.89 mg/l), chemical oxygen demand (17.19 ± 0.15 mg/l), temperature (24°C to 27°C) and depth (0.23 to 0.35 m) were significantly different across the different stations and between the months. However, total dissolved solids (52.7 to 108.8 mg/l), dissolved oxygen (6.02 to 7.01 mg/l), ammonia (0.00 to 0.02 mg·l-1), nitrite (0.01 - 0.09 mg·l-1), nitrate (0.045 ± 0.006 mg·l-1), phosphate (0.2 to 2.05 mg·l-1) and flow velocity (0.1 to 0.35 m·s-1) showed variations within the sampling stations. Maximum conductivity (211.7 μS/cm), colour (5.83 Pt.Co), turbidity (22.7 NTU), total suspended solids (54 mg/l), total dissolved solids (108.8 mg/l), nitrite (0.09 mg/l) and nitrate (0.006 mg/l) values were recorded at station 2 which is the discharge point of industrial waste. River water did show significant pollutional increase at the effluent impacted site during the present study. Dissolved oxygen showed direct relation with temperature, biochemical oxygen demand and chemical oxygen demand. The non-stop and continuous discharges of cement waste water into the river lessened water quality with significant or corresponding effect on the biota of the studied area, thus paving way for clear assertion that the water quality deterioration was as a result of the impacts of the waste water from cement industry.展开更多
The role of metakaolin in the properties of Portland cement hydrated with ground water and sea water was described by magnetic susceptibility study. Cement pastes containing 0wt%, 10wt%, 20wt% and 30wt% replacement of...The role of metakaolin in the properties of Portland cement hydrated with ground water and sea water was described by magnetic susceptibility study. Cement pastes containing 0wt%, 10wt%, 20wt% and 30wt% replacement of metakaolin and in a water/cement (W/C) ratio of 0.4 were prepared. The susceptibility at different hydration periods was determined by Faraday Curie balance and it was related to the changes in setting time and compressive strength of admixtured cement. Compared with sea water-treated cement paste, the magnetic susceptibility of ground water-treated cement paste is higher in value. The observed result shows that, irrespective of water, the magnetic susceptibility increases with increasing metakaolin percentage replacement level in cement.展开更多
As coal and gas outburst is one of the most serious mine disasters, it is very important to at least control it if not prevent it from occurring. Injecting cement slurry or grouting into the coal seam can strengthen t...As coal and gas outburst is one of the most serious mine disasters, it is very important to at least control it if not prevent it from occurring. Injecting cement slurry or grouting into the coal seam can strengthen the seam, increase its rigidity coefficient(f), and reduce the volumetric expansion due to gas energy release.This paper reports the results of laboratory experiments on cement-based high water content slurry having different water-cement ratios(W/C) to be used for coal injection. The results show that as the W/C increases, the mobility of the slurry and its setting time increase. The compressive strength and rupture strength, however, are reduced. Furthermore, high W/C grout shows early strength after 7 days, which can be 80% of its 14-day compressive strength. To achieve rapid setting and early strength, the addition of Na_2SiO_3has proven to give the best result, when the concentration of the additive is 3%. The initial and final setting times are 13 and 21 min shorter than samples without Na_2SiO_3, while the compressive strength is more than double. As a retarder, the initial setting time can be extended to 83 min when tartaric acid of 0.4% concentration is added. Through the orthogonal experiment, the optimum recipe of the new high water content slurry has been determined to be: W/C = 2, tartaric acid = 0.2%, Na_2SiO_3= 3%, and12% bentonite. Reinforcement by injection simulation experiments show that the grouting radius of the new slurry mix is 250 mm when the applied grouting pressure is 60 k Pa, 7-day rupture strength and compressive strength are 5.2 and 6.4 MPa, respectively, and are 37% and 88% higher than ordinary cement grout. It can be concluded that the newly developed slurry mix is more effective than the ordinary mix for reinforcing coal and controlling gas outburst.展开更多
基金Project(2009CB623105) supported by the National Basic Research Program of ChinaProject(51108341) supported by the National Natural Science Foundation of ChinaProjects(20110490703, 2012T50437) supported by China Postdoctoral Science Foundation
文摘The low field nuclear magnetic resonance (NMR), as a nondestructive and noninvasive technique, was employed to investigate the water distribution and content in cement paste with different water-to-cement ratio (w/c ratio) during early and later hydration stages. From the water distribution spectrum deduced from relaxation time distribution in paste, it is suggested that the water fills in the capillary pores at initial period, and then diffuses to the mesopores and gel pores in hydration products with the hydration proceeding. The decrease of peak area in water distribution spectrum reflects the transformation from physically bound water to chemically bound water. In addition, based on the connection between relaxation time and pore size, the relative content changes of water in various states and constrained in different types of pores were also measured. The results demonstrate that it is influenced by the formation of pore system and the original water-to-cement ratio in the paste. Consequently, the relative content of capillary water is dropped to less than 2% in the paste with low w/c ratio of 0.3 when being hydrated for 1 d, while the contents are still 16% and 36% in the pastes with w/c ratios of 0.4 and 0.5, respectively.
基金The work was supported by Yunnan Local Colleges Applied Basic Research Projects(No.2018FH001-119)Science Research Foundation of Yunnan Education Department of China(Nos.2019J0734,2019J0733,2017ZZX177 and 2018JS422)+2 种基金the Candidate Talents Training Fund of Yunnan Province(Project No.2015HB064)National Natural Science Foundation of China(No.11802265)The authors(MBY and QLH)gratefully acknowledge the financial support from the Hundred Talents Program of Yuxi(Grant 2019).
文摘A simple hydration model is used here by taking the composition of the cement and the initial water: cementratio (w/c) into account explicitly. Its conceptual basis is a combination of the Avrami equation and Bentz’s modelbased on simple spatial considerations. In this model, the Avrami equation determines the initial reaction, andBentz’s model describes the following hydration stage. The model favors engineers for it relies on one experimentalparameter and has a reliable approximation in the practice.
基金supported by the Key Programs of Ministry of Education of China(Grant No.109046)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Eduation Ministrythe Program of Innovative Research Team of Education of China(Grant No.IRT0518)
文摘The capillary absorption of water by unsaturated cement-based material is the main reason of degradation of the structures subjected to an aggressive environment since water often acts as the transporting medium for damaging contaminants. It is well known that the capillarity coefficient and sorptivity are two important parameters to characterize the water absorption of porous materials. Generally, the former is used to describe the penetration depth or height of water transport, which must be measured by special and advanced equipment. In contrast, the sorptivity represents the relationship between cumulative volume of water uptake and the squareroot of the elapsed time, which can be easily measured by the gravimetric method in a normal laboratory condition. In the present study, an analytical method is developed to build up a bridge between these two parameters, with the purpose that the sorptivity or the gravimetric method can be used to predict the penetration depth of water absorption. Additionally, a new model to explain the dependence of sorptivity on initial water content of the material is developed in order to fit the in situ condition. The comparison of predicted results by the analytical method with experimental data or numerical calculation results, as well as some previous models, validates the feasibility of the methods presented in this paper.
文摘A new type of high water content material which is made up of two pastes is prepared, one is refute from lime and gypsum, and another is based on Ba-bearing sulphoaluminate cement. It has excellent properties such as slow single paste solidifing ,fust double pustes solidifing ,fast coagulating and hardening, high early strength, good suspeasion property at high W/C ratio and low cost. Meanwhile, the properties and hydration mechanism of the material were analyzed by using XRD, DTA- TG and SEM. The hydrated products of new type of high water content material are Ba-bearing ettringite, BaSO4 , aluminum gel and C-S-H gel.
基金Funded by the "Hundred Talents" Project of Chinese Academy of Sciencesthe "Technology Innovation" Project of Chinese Academy of Sciences
文摘By incorporation of fly ash or silica fume into magnesium oxychloride (MOC) cement, a high water resistance material can be formed for successful industrial applications. The influences of fly ash and silica fume on water-resistant property were investigated by SEM and EDS. It is found that the incorporation of fly ash or silica fume can improve the water-resistance of the MOC. The improvement of the water resistance of the MOC incorporated with fly ash or silica fume may be attributed to the alumino-silicate 5·1·8 gel or silicate 5·1·8 gel.
基金Funded by the National Basic Research Program of China(No.2009CB623200)Zhejiang Natural Science Foundation(No.LQ12E08002)+1 种基金Ningbo Natural Science Foundation(No.2012A610159)the School Disciplinary Projects(No.zj1113,XKL11D2081)
文摘The effects of specimen size and shape on development of water loss and shrinkage of mortar and concrete respectively were investigated. The experimental results showed that the effects of specimen size and shape on water loss ratio were consistent with those on drying shrinkage strain. It is also indicated that drying shrinkage strain has obvious linear correlation with water loss ratios independent of specimen size and shape. The effects of specimen size and shape on the water loss ratio were embodied in established model of averaged relative humidity improved by considering effects of sequential hydration and calculated by finite difference method. Furthermore, the effects of specimen size and shape on drying shrinkage strain of concrete were experimentally deduced and applied to modify criterion EB-FIP1990. The comparison between experimental and calculated results shows that the modified EB-FIP1990 can be adopted to predict drying shrinkage strain of concrete with reasonable accuracy.
文摘In this study, water permeation through cementitious materials was observed using magnetic resonance imaging (MRI). The influence of cement type on the magnetic resonance signal was studied subsequent to determining the parameters required for imaging. Consequently, adequate imaging of water permeating through hardened cement paste (HCP) made with white Portland cement was achieved, while water permeation through ordinary Portland cement-based HCP yielded poor signal. HCPs maintained at various levels of relative humidity (RH) were observed, and the signal was detected only from those maintained at an RH of higher than 85%. The water permeation depths in HCP were observed by using MRI, and the measured depths were compared to those measured via a spraying water detector on the split surface of the specimens. As a result, good agreement was confirmed between the two methods. Additionally, MRI was applied to concrete specimens;although it was found that water was not detected when a lightweight aggregate was used, water permeation through concrete with limestone aggregate was detectable via MRI. MRI will help in understanding how water permeation causes and accelerates concrete deteriorations such as rebar corrosion and freezing and thawing.
文摘In this paper .the change of the crystalline phases in hardened magnesium oxychloride cement (MOC) paste in mater was analyzed by XRD. It was developed that the reaction products 5 phase or 3 phase of MOC are instable in water and can be changed into Mg(OH)2 by the action of water, which causes the content of 5 phase or 3 phase to be less and less,the content of Mg(OH)2 to be more and more and the strength to be the lower the lower,after hardended MOC paste was immersed in water. The change of 5 pliase and 3 phase into Mg(OH)2 is not a dissolve process, but a hydrolysis process. The hydrolysis products of 5 phase and 3 phase are Mg(OH)2 precipitation and soluble Cl-,AIg+ ions and H2O. The hydrolysis is sponta-neous thermodynamically and its chemical kinatic equation is C = C,,e-k Thus .it is suggested that only by enhancing the stability of 5 phase or 3 phase in water and preventing 5 phase or 3 phase from the hydrolyzing can the water resistance of MOC be improved well.
文摘Water addition has direct impact on castables and needs to be under control placement and properties, In this work, two rheological properties, flow resistance and torque viscosity, have been measured against time, with different water addition in the same bauxile-based LC Castable mix. The flow resistance indicates the mobility, whereas the torque viscosity dictates the stability of a castable during installation. It has been observed that with 6.0wt% water addition, such a mix possesses good vibration castable characteristics; with 6.5 wt%, it shows good self-flow castable characteristics; and with 7.0 wt%, it can be a good pumpable castable, in every case with comparable mechanical properties. While with 7.5 wt% water addition, the properties of such castable are definitively impaired.
文摘The development of strength and the form of attack of cement-based material made of limestone powder at low water-binder ratio under low-temperature sulfate environment were studied. The results indicate that when water-binder ratio is lower than 0.40, the cement-based material with limestone powder has insignificant change in appearance after being soaked in 10% magnesium sulfate solution at low temperature for 120 d, and has significant change in appearance after being soaked at the age of 200 d. Expansion damage and exfoliation occur on the surface of concrete test cube at different levels. When limestone powder accounts for about 28 percent of cementitious material, with the decrease of water-binder ratio, the compressive strength loss has gradually decreased after the material is soaked in the magnesium sulfate solution at low temperature at the age of 200 d. After the specimen with the water-binder ratio of less than 0.4 and the limestone powder volume of greater than 20% is soaked in 10% magnesium sulfate solution at low temperature at the age of 200 d, gypsum attack-led destruction is caused to the concrete test cube, without thaumasite sulfate attack.
基金Funded by the National Natural Science Foundation of China(Nos.51778003 and 51308004)the Project of Anhui Provincial Education Department for Sending Visiting Scholars to Research Abroad(No.gxfx ZD2016134)+1 种基金the Anhui Province Higher Education Revitalization Program Talent Project([2014]No.11)the National Key Research and Development Plan(No.2017YFB0310001)
文摘The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregate and matrix in concrete was analyzed by using a micro-hardness tester, a laser confocal microscope and a scanning electron microscope with backscattered electron image mode. The pore structure of mortar matrixes under different curing conditions was investigated by mercury intrusion porosimetry. The results showed that when natural aggregates were replaced with air-cooled blast furnace slag aggregates in mortar or concrete, the content of the capillary pore in the mortar matrix was reduced and the interfacial structure between aggregate and matrix was improved, resulting in the lower water absorption of mortar or concrete. Compared to the concrete made with crushed limestone and natural river sand, the initial absorption coefficient, the secondary absorption coefficient and the water absorption capacity through the surface for 7 d of the concrete made from crushed air-cooled blast furnace slag and air-cooled blast furnace slag sand were reduced by 48.9%, 52.8%, and 46.5%, respectively.
基金Funded by the National Natural Science Foundation of China (No.50238040, 50538020)the Postdoctoral Science Foundation of China (No.20060390803)the High-Tech Research and Development Program of China (No. 2002AA335010)
文摘The influence of water content on the conductivity and piezoresistivity of cement-based material with carbon fiber (CF) and carbon black (CB) was investigated. The piezoresistivity of cement-based material with both CF and CB was compared with that of cement-based material with CF only, and the changes in electrical resistivity of cement-based material with both CF and CB under static and loading conditions in different drying and soaking time were studied. It is found that the piezoresistivity of cement-based material with both CF and CB has better repeatability and linearity than that of cement-based material with CF only. The conductivity and the sensitivity of piezoresistive cement-based material with both CF and CB are enhanced as the water content in piezoresistive cement-based material increases.
文摘Water samples were collected from three stations along the water course of Oinyi River, Kogi State, Nigeria, bi-monthly for 12 months (October 2010 to September 2011). A total of 16 physical and chemical parameters (temperature, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, electrical conductivity, flow velocity, depth, nitrate, nitrite, phosphate, ammonia, pH, turbidity, total suspended solids, total dissolved solids and colour) were analyzed and results showed that pH (6.8 to 7.26), conductivity (106.0 to 211.7 μS/cm), colour (3.87 ± 0.159 Pt.Co), turbidity (14 - 22.7 NTU), total suspended solids (45 - 54 mg/l), biochemical oxygen demand (2.05 - 2.89 mg/l), chemical oxygen demand (17.19 ± 0.15 mg/l), temperature (24°C to 27°C) and depth (0.23 to 0.35 m) were significantly different across the different stations and between the months. However, total dissolved solids (52.7 to 108.8 mg/l), dissolved oxygen (6.02 to 7.01 mg/l), ammonia (0.00 to 0.02 mg·l-1), nitrite (0.01 - 0.09 mg·l-1), nitrate (0.045 ± 0.006 mg·l-1), phosphate (0.2 to 2.05 mg·l-1) and flow velocity (0.1 to 0.35 m·s-1) showed variations within the sampling stations. Maximum conductivity (211.7 μS/cm), colour (5.83 Pt.Co), turbidity (22.7 NTU), total suspended solids (54 mg/l), total dissolved solids (108.8 mg/l), nitrite (0.09 mg/l) and nitrate (0.006 mg/l) values were recorded at station 2 which is the discharge point of industrial waste. River water did show significant pollutional increase at the effluent impacted site during the present study. Dissolved oxygen showed direct relation with temperature, biochemical oxygen demand and chemical oxygen demand. The non-stop and continuous discharges of cement waste water into the river lessened water quality with significant or corresponding effect on the biota of the studied area, thus paving way for clear assertion that the water quality deterioration was as a result of the impacts of the waste water from cement industry.
文摘The role of metakaolin in the properties of Portland cement hydrated with ground water and sea water was described by magnetic susceptibility study. Cement pastes containing 0wt%, 10wt%, 20wt% and 30wt% replacement of metakaolin and in a water/cement (W/C) ratio of 0.4 were prepared. The susceptibility at different hydration periods was determined by Faraday Curie balance and it was related to the changes in setting time and compressive strength of admixtured cement. Compared with sea water-treated cement paste, the magnetic susceptibility of ground water-treated cement paste is higher in value. The observed result shows that, irrespective of water, the magnetic susceptibility increases with increasing metakaolin percentage replacement level in cement.
基金financial support of the National Natural Science Foundation of China (No. 51474017)the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China (No. 2014211B013)
文摘As coal and gas outburst is one of the most serious mine disasters, it is very important to at least control it if not prevent it from occurring. Injecting cement slurry or grouting into the coal seam can strengthen the seam, increase its rigidity coefficient(f), and reduce the volumetric expansion due to gas energy release.This paper reports the results of laboratory experiments on cement-based high water content slurry having different water-cement ratios(W/C) to be used for coal injection. The results show that as the W/C increases, the mobility of the slurry and its setting time increase. The compressive strength and rupture strength, however, are reduced. Furthermore, high W/C grout shows early strength after 7 days, which can be 80% of its 14-day compressive strength. To achieve rapid setting and early strength, the addition of Na_2SiO_3has proven to give the best result, when the concentration of the additive is 3%. The initial and final setting times are 13 and 21 min shorter than samples without Na_2SiO_3, while the compressive strength is more than double. As a retarder, the initial setting time can be extended to 83 min when tartaric acid of 0.4% concentration is added. Through the orthogonal experiment, the optimum recipe of the new high water content slurry has been determined to be: W/C = 2, tartaric acid = 0.2%, Na_2SiO_3= 3%, and12% bentonite. Reinforcement by injection simulation experiments show that the grouting radius of the new slurry mix is 250 mm when the applied grouting pressure is 60 k Pa, 7-day rupture strength and compressive strength are 5.2 and 6.4 MPa, respectively, and are 37% and 88% higher than ordinary cement grout. It can be concluded that the newly developed slurry mix is more effective than the ordinary mix for reinforcing coal and controlling gas outburst.