The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Pl...The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Plateau(TP).This paper summarizes the scientific achievements obtained from the data collected by the INVC observation network and highlights the progress in investigating the development of heavy rainfall events associated with water vapor changes.The rain gauge network of the INVC can represent the impacts of the Yarlung Zsangbo Grand Canyon(YGC)topography on precipitation at the hourly scale.The microphysical characteristics of the precipitation in the YGC are different than those in the lowland area.The GPM-IMERG(Integrated MultisatellitE Retrievals for Global Precipitation Measurement)satellite precipitation data for the YGC region should be calibrated before they are used.The meridional water vapor flux through the YGC is more important than the zonal flux for the precipitation over the southeastern TP.The decreased precipitation around the YGC region is partly due to the decreased meridional water vapor flux passing through the YGC.High-resolution numerical models can benefit precipitation forecasting in this region by using a combination of specific schemes that capture the valley wind and water vapor flux along the valley floor.展开更多
TO THE EDITOR Sir, I read with great interest the recently published article in the World Journal of Gastroenterology by Jin and co-workers on the cloning and characterization of porcine aquaporin 1 water channel from...TO THE EDITOR Sir, I read with great interest the recently published article in the World Journal of Gastroenterology by Jin and co-workers on the cloning and characterization of porcine aquaporin 1 water channel from the pig liver and studies on its expression in the porcine gastrointestinal system. The authors should be congratulated for making this important and valuable contribution to the field of aquaporin biology and porcine gastrointestinal physiology. However, there are a number of unresolved issues and controversies concerning the expression of aquaporins (especially aquaporin 1) in the gastrointestinal system that are worthy of additional comment and discussion by Jin and co-workers.展开更多
Previous studies have demonstrated the possible role of several aquaporins in seed germination. But systematic investigation of the role ofaquaporin family members in this process is lacking. Here, the developmental r...Previous studies have demonstrated the possible role of several aquaporins in seed germination. But systematic investigation of the role ofaquaporin family members in this process is lacking. Here, the developmental regulation of plasma membrane intrinsic protein (PIP) expression throughout germination and post-germination processes in rice embryos was analyzed. The expression patterns of the PIPs suggest these aquaporins play different roles in seed germination and seedling growth. Partial silencing of the water channel genes, OsPIP1;1 and OsPIP1:3, reduced seed germination while over-expression of OsPIP1:3 promoted seed germination under water-stress conditions. Moreover, spatial expression analysis indicates that OsPIP1:3 is expressed predominantly in embryo during seed germination. Our data also revealed that the nitric oxide (NO) donors, sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO), promoted seed germination; furthermore, the NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, inhibited germination and reduced the stimulative effects of SNP and GSNO on rice germination. Exogenous NO stimulated the transcription of OsPIP1:1, OsPIP1:2, OsPIP1:3 and OsPIP2:8 in germinating seeds. These results suggest that water channels play an important role in seed germination, acting, at least partly, in response to the NO signaling pathway.展开更多
This paper presents a systematic model test program to assess the uncertainty of the ship-bank interaction forces,using the planar motion mechanism(PMM)system in a circulating water channel(CWC).Therefore,the uncertai...This paper presents a systematic model test program to assess the uncertainty of the ship-bank interaction forces,using the planar motion mechanism(PMM)system in a circulating water channel(CWC).Therefore,the uncertainties due to ship-bank distance and water depth are considered,and they are calculated via the partial differentials of the regression formulae based on the test data.The general part of the uncertainty analysis(UA)is performed according to the ITTC recommended procedure 7.5-02-06.04,while the uncertainty of speed is identified as the bias limit due to the flow velocity maldistribution in the CWC.In each example test for the UA of ship-bank interaction forces,12 repeated measurements were conducted.Results from the UA show that the contribution of water depth error and flow velocity maldistribution to the total uncertainty is noticeable,and the paper explains how they increase with the change of the test conditions.The present study will be useful in understanding the uncertainty regarding the ship-bank interaction force measurement in a CWC.展开更多
Oceanographical features on both sides of Balingtang Channel (17°55′-20°06′N, 122°55′-126°57′E) were comprehensively investigated on board of R/V "Experiment 3" in June. 1984. The pre...Oceanographical features on both sides of Balingtang Channel (17°55′-20°06′N, 122°55′-126°57′E) were comprehensively investigated on board of R/V "Experiment 3" in June. 1984. The pre-sent paper reports the chlorophyll data collected and primary productivity estimated there. Water sam-ples were taken with a glass bottle of Model HQMat the depth of 0, 10. 25, 50, 75, 100 and 150m, separately. Chlorophyll was determined according to the spectrophotometry proposed by UNESCO(1966) and calculated with the trichromatic equations of Jeffrey-Humphrey(1975). Estimations ofprimary productivity were carried out using a simplified equation (Q = 1.5) given by Cadee(1975).展开更多
Actin filaments play important physiological functions,which have become potential targets of antitumor drugs.Using chemicals to intervene their polymerization-depolymerization dynamics would generate new strategies f...Actin filaments play important physiological functions,which have become potential targets of antitumor drugs.Using chemicals to intervene their polymerization-depolymerization dynamics would generate new strategies for designing antitumor drugs.In this report,an artificial water channel appending acetazolamide moiety,a ligand that can selectively bind to carbonic anhydrase IX,has been prepared.展开更多
In this paper we present some simulation results about the behaviour of water molecules inside a single wall carbon nanotube (SWNT). We find that the confinement of water in an SWNT can induce a wave-like pattern di...In this paper we present some simulation results about the behaviour of water molecules inside a single wall carbon nanotube (SWNT). We find that the confinement of water in an SWNT can induce a wave-like pattern distribution along the channel axis, similar phenomena are also observed in biological water channels. Carbon nanotubes(CNTs) can serve as simple nonpolar water channels. Molecular transport through narrow CNTs is highly collective because of tight hydrogen bonds in the protective environment of the pore. The hydrogen bond net is important for proton and other signal transports. The average dipoles of water molecules inside CNTs (7,7), (8,8) and (9,9) are discussed in detail. Simulation results indicate that the states of dipole are affected by the diameter of SWNT. The number of hydrogen bonds, the water-water interaction and water-CNT interaction are also studied in this paper.展开更多
Water use efficiency (WUE) of higher plants is of vital importance in the dry-land agricultural ecosystem in terms of the development of water-saving agriculture. Of all the approaches used to improve WUE, the intri...Water use efficiency (WUE) of higher plants is of vital importance in the dry-land agricultural ecosystem in terms of the development of water-saving agriculture. Of all the approaches used to improve WUE, the intrinsic water use efficiency (WUET, the ratio of CO2 assimilation rate to transpiration rate) can be a right index, as the variation of WUET is correlated with the physiological and biochemical processes of higher plants. The measurements of leaf gas exchange and carbon isotope discrimination (D^13C) are the two ways to detect the variation in WUEr. This article reviewed some physiological processes related to WUEv, including the relationship between CO2 assimilation and stomatal conductance and WUET and water absorption. The relationship between WUE and aquaporin and the yield are discussed as well.展开更多
The motion of a lure in water is investigated experimentally and numerically.The lure motion in water of apassing water tank is observed,and the periodic motion is found.From the Fourier analysis,it is found that the ...The motion of a lure in water is investigated experimentally and numerically.The lure motion in water of apassing water tank is observed,and the periodic motion is found.From the Fourier analysis,it is found that the frequency with the largest amplitude in the lateral direction depends on the lip width of the lure.To understand the lure dynamics,a numerical simulation of the flow field around the lure is performed.The shape is measured using an X-ray computer tomography and converted into a voxel model.From visualization,it is found that vortex sheds from its lip correspond to the vibration frequency of the lure.展开更多
The successful launch and commissioning of the first geostationary meteorological satellite of Korea has the potential to enhance earth observation capability over the Asia Pacific region. Although the specifications ...The successful launch and commissioning of the first geostationary meteorological satellite of Korea has the potential to enhance earth observation capability over the Asia Pacific region. Although the specifications of the payload, the mete- orological imager (MI), have been verified during both ground and in-orbit tests, there is the possibility of variation and/or degradation of data quality due to many different reasons, such as the accumulation of contaminants, the aging of instrument components, and unexpected external disturbance. Thus, for better utilization of MI data, it is imperative to continuously monitor and maintain the data quality. As a part of such activity, this study presents an inter-calibration, based on the Global Space-based Inter-Calibration System (GSICS), between the MI data and the high quality hyperspectral data from the In- frared Atmospheric Sounding Interferometer (IASI) of the Metop-A satellite. Both sets of data, acquired for three years from April 2011 to March 2014, are processed to prepare the matchup dataset, which is spatially collocated, temporally concurrent, angularly coincident, and spectrally comparable. The results show that the MI data are stable within the specifications and show no significant degradation during the study period. However, the water vapor channel shows a rather large bias value of -0.77 K, with a root-mean-square difference (RMSD) of around 1.1 K, which is thought to be due to the shift in the spectral response function. The shortwave channel shows a maximum RMSD of around 1.39 K, mainly due to the coarse digitization at the lower temperature. The inter-comparison results are re-checked through a sensitivity analysis with different sets of threshold values used for the matchup dataset. Based on this, we confirm that the overall quality of the MI data meets the user requirements and maintains the expected performance, although the water vapor channel requires further investigation.展开更多
Hydrological,sediment,and bathymetric data of the Shashi Reach in the middle Yangtze River for the period of 1975-2018 were collected,and the characteristics of low water level changes and their impacts on utilization...Hydrological,sediment,and bathymetric data of the Shashi Reach in the middle Yangtze River for the period of 1975-2018 were collected,and the characteristics of low water level changes and their impacts on utilization of water depth for navigation were investigated.The results showed that,during the study period,the Shashi Reach riverbed was significantly scoured and incised,with cross-sectional profiles showing overall narrowing and deepening.This indicated a strong potential to improve the water depth of the channel.The analysis of the temporal variation of in-channel topographical features showed that the Taipingkou diara underwent siltation and erosion,with its head gradually scoured and relocated downstream after 2008,and the Sanbatan diara continued to shrink and migrate leftwards.Low water levels with the same flow rate over the study period decreased.For instance,from 2003 to 2020,the water level at the Shashi hydrological station decreased to 1.37 m with a flow rate of 6000 m^(3)/s.Furthermore,the designed minimum navigable water level of the Shashi Reach was approximately 2.11m lower than the recommended level.In terms of utilization of the channel water depth,continuous scouring of the river channel is expected to result in a reduction in discharge at the Taipingkou mouth,which will improve the water depth conditions of the channel during the dry season in the Shashi Reach.With several channel regulation projects,the 3.5-m depth of the Shashi Reach would basically be unobstructed.This promotes utilization of the shipping route from the Taipingkou south branch to the Sanbatan north branch as the main navigation channel during the dry season.Considering the factors of current water depth and the clear width limitation of the navigation hole at the Jingzhou Yangtze River Bridge,this route can still be favored as the main navigation channel with a 4.5-m depth during the dry season.展开更多
The water resources of rivers and reservoirs with a five-meter drop are used to discuss the technical theory and the cost and practical value of equipment cases.The high-quality development technology of water resourc...The water resources of rivers and reservoirs with a five-meter drop are used to discuss the technical theory and the cost and practical value of equipment cases.The high-quality development technology of water resources explored in this paper provides a feasible plan for achieving the goal of innovation to zero.展开更多
针对成子河船闸需穿越多重水系,闸位选择受限因素多且引航道通航水流条件复杂的问题,船闸平面布置从水系连通、防洪规划、通航安全、对灌溉排涝的影响、船闸运营管理、征地拆迁和投资等多方面进行了技术经济比选。通过数模在引航道与上...针对成子河船闸需穿越多重水系,闸位选择受限因素多且引航道通航水流条件复杂的问题,船闸平面布置从水系连通、防洪规划、通航安全、对灌溉排涝的影响、船闸运营管理、征地拆迁和投资等多方面进行了技术经济比选。通过数模在引航道与上下游交叉河流处分别限定300、120 m 3 s最大安全通航流量条件,并采用疏浚拓挖增加过水断面和设置导流墙调整主流方向,改善了船闸引航道的通航水流条件。对复杂水系条件下的船闸闸位选择和平面布置有借鉴意义。展开更多
基金funded by the Second Tibetan Plateau Scientific Expedition and Research Program[grant numbers 2019QZKK0105 and 2019QZKK0103]the National Natural Science Foundation of China[grant number 41975009].
文摘The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Plateau(TP).This paper summarizes the scientific achievements obtained from the data collected by the INVC observation network and highlights the progress in investigating the development of heavy rainfall events associated with water vapor changes.The rain gauge network of the INVC can represent the impacts of the Yarlung Zsangbo Grand Canyon(YGC)topography on precipitation at the hourly scale.The microphysical characteristics of the precipitation in the YGC are different than those in the lowland area.The GPM-IMERG(Integrated MultisatellitE Retrievals for Global Precipitation Measurement)satellite precipitation data for the YGC region should be calibrated before they are used.The meridional water vapor flux through the YGC is more important than the zonal flux for the precipitation over the southeastern TP.The decreased precipitation around the YGC region is partly due to the decreased meridional water vapor flux passing through the YGC.High-resolution numerical models can benefit precipitation forecasting in this region by using a combination of specific schemes that capture the valley wind and water vapor flux along the valley floor.
文摘TO THE EDITOR Sir, I read with great interest the recently published article in the World Journal of Gastroenterology by Jin and co-workers on the cloning and characterization of porcine aquaporin 1 water channel from the pig liver and studies on its expression in the porcine gastrointestinal system. The authors should be congratulated for making this important and valuable contribution to the field of aquaporin biology and porcine gastrointestinal physiology. However, there are a number of unresolved issues and controversies concerning the expression of aquaporins (especially aquaporin 1) in the gastrointestinal system that are worthy of additional comment and discussion by Jin and co-workers.
基金This work was supported by the National Natural Science Foundation of China(No.30670172)by the Korea Foundation for International Cooperation of Science and Technology(K/C0S)through a grant provided by the Korean Ministry of Science and Technology.
文摘Previous studies have demonstrated the possible role of several aquaporins in seed germination. But systematic investigation of the role ofaquaporin family members in this process is lacking. Here, the developmental regulation of plasma membrane intrinsic protein (PIP) expression throughout germination and post-germination processes in rice embryos was analyzed. The expression patterns of the PIPs suggest these aquaporins play different roles in seed germination and seedling growth. Partial silencing of the water channel genes, OsPIP1;1 and OsPIP1:3, reduced seed germination while over-expression of OsPIP1:3 promoted seed germination under water-stress conditions. Moreover, spatial expression analysis indicates that OsPIP1:3 is expressed predominantly in embryo during seed germination. Our data also revealed that the nitric oxide (NO) donors, sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO), promoted seed germination; furthermore, the NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, inhibited germination and reduced the stimulative effects of SNP and GSNO on rice germination. Exogenous NO stimulated the transcription of OsPIP1:1, OsPIP1:2, OsPIP1:3 and OsPIP2:8 in germinating seeds. These results suggest that water channels play an important role in seed germination, acting, at least partly, in response to the NO signaling pathway.
基金This study is financially supported by the China Ministry of Education Key Research Project“KSHIP-II Project”(Grant No.GKZY010004).
文摘This paper presents a systematic model test program to assess the uncertainty of the ship-bank interaction forces,using the planar motion mechanism(PMM)system in a circulating water channel(CWC).Therefore,the uncertainties due to ship-bank distance and water depth are considered,and they are calculated via the partial differentials of the regression formulae based on the test data.The general part of the uncertainty analysis(UA)is performed according to the ITTC recommended procedure 7.5-02-06.04,while the uncertainty of speed is identified as the bias limit due to the flow velocity maldistribution in the CWC.In each example test for the UA of ship-bank interaction forces,12 repeated measurements were conducted.Results from the UA show that the contribution of water depth error and flow velocity maldistribution to the total uncertainty is noticeable,and the paper explains how they increase with the change of the test conditions.The present study will be useful in understanding the uncertainty regarding the ship-bank interaction force measurement in a CWC.
文摘Oceanographical features on both sides of Balingtang Channel (17°55′-20°06′N, 122°55′-126°57′E) were comprehensively investigated on board of R/V "Experiment 3" in June. 1984. The pre-sent paper reports the chlorophyll data collected and primary productivity estimated there. Water sam-ples were taken with a glass bottle of Model HQMat the depth of 0, 10. 25, 50, 75, 100 and 150m, separately. Chlorophyll was determined according to the spectrophotometry proposed by UNESCO(1966) and calculated with the trichromatic equations of Jeffrey-Humphrey(1975). Estimations ofprimary productivity were carried out using a simplified equation (Q = 1.5) given by Cadee(1975).
基金Financial support from the National Natural Science Foundation of China(NSFC,Grant Nos.21971046,and 21921003)the Science and Technology Commission of Shanghai Municipality(STCSM,Grant No.22JC1403700)is gratefully acknowledged.
文摘Actin filaments play important physiological functions,which have become potential targets of antitumor drugs.Using chemicals to intervene their polymerization-depolymerization dynamics would generate new strategies for designing antitumor drugs.In this report,an artificial water channel appending acetazolamide moiety,a ligand that can selectively bind to carbonic anhydrase IX,has been prepared.
文摘In this paper we present some simulation results about the behaviour of water molecules inside a single wall carbon nanotube (SWNT). We find that the confinement of water in an SWNT can induce a wave-like pattern distribution along the channel axis, similar phenomena are also observed in biological water channels. Carbon nanotubes(CNTs) can serve as simple nonpolar water channels. Molecular transport through narrow CNTs is highly collective because of tight hydrogen bonds in the protective environment of the pore. The hydrogen bond net is important for proton and other signal transports. The average dipoles of water molecules inside CNTs (7,7), (8,8) and (9,9) are discussed in detail. Simulation results indicate that the states of dipole are affected by the diameter of SWNT. The number of hydrogen bonds, the water-water interaction and water-CNT interaction are also studied in this paper.
基金This study was supported by the National Basic Research Program of China(2005CB121101)the National Natural Science Foundation of China(30400279)This paper is in memory of Prof.Dr.Burkhard Sattelmacher(08,6,1947-11,21,2005).
文摘Water use efficiency (WUE) of higher plants is of vital importance in the dry-land agricultural ecosystem in terms of the development of water-saving agriculture. Of all the approaches used to improve WUE, the intrinsic water use efficiency (WUET, the ratio of CO2 assimilation rate to transpiration rate) can be a right index, as the variation of WUET is correlated with the physiological and biochemical processes of higher plants. The measurements of leaf gas exchange and carbon isotope discrimination (D^13C) are the two ways to detect the variation in WUEr. This article reviewed some physiological processes related to WUEv, including the relationship between CO2 assimilation and stomatal conductance and WUET and water absorption. The relationship between WUE and aquaporin and the yield are discussed as well.
基金supported in part by Tokyo Denki University Science Promotion Fund(Q12K-04)
文摘The motion of a lure in water is investigated experimentally and numerically.The lure motion in water of apassing water tank is observed,and the periodic motion is found.From the Fourier analysis,it is found that the frequency with the largest amplitude in the lateral direction depends on the lip width of the lure.To understand the lure dynamics,a numerical simulation of the flow field around the lure is performed.The shape is measured using an X-ray computer tomography and converted into a voxel model.From visualization,it is found that vortex sheds from its lip correspond to the vibration frequency of the lure.
基金supported by the project entitled "Development of Meteorological Satellite Operation and Application Technology" of the KMA/NMSC (Korea Meteorological Adminstration/National Meteorological Satellite Center)supported by the Eco Innovation Program of KEITI (Korea Environmental Industry & Technology Institute) (Grant No. 2013000160002)
文摘The successful launch and commissioning of the first geostationary meteorological satellite of Korea has the potential to enhance earth observation capability over the Asia Pacific region. Although the specifications of the payload, the mete- orological imager (MI), have been verified during both ground and in-orbit tests, there is the possibility of variation and/or degradation of data quality due to many different reasons, such as the accumulation of contaminants, the aging of instrument components, and unexpected external disturbance. Thus, for better utilization of MI data, it is imperative to continuously monitor and maintain the data quality. As a part of such activity, this study presents an inter-calibration, based on the Global Space-based Inter-Calibration System (GSICS), between the MI data and the high quality hyperspectral data from the In- frared Atmospheric Sounding Interferometer (IASI) of the Metop-A satellite. Both sets of data, acquired for three years from April 2011 to March 2014, are processed to prepare the matchup dataset, which is spatially collocated, temporally concurrent, angularly coincident, and spectrally comparable. The results show that the MI data are stable within the specifications and show no significant degradation during the study period. However, the water vapor channel shows a rather large bias value of -0.77 K, with a root-mean-square difference (RMSD) of around 1.1 K, which is thought to be due to the shift in the spectral response function. The shortwave channel shows a maximum RMSD of around 1.39 K, mainly due to the coarse digitization at the lower temperature. The inter-comparison results are re-checked through a sensitivity analysis with different sets of threshold values used for the matchup dataset. Based on this, we confirm that the overall quality of the MI data meets the user requirements and maintains the expected performance, although the water vapor channel requires further investigation.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFB 1600400)the National Natural Science Foundation of China(Grants No.51779184 and 51809131)+1 种基金the Fundamental Research Funds for Central Welfare Research Institutes(Grants No.TKS20200404 and TKS 190406)the Special Scientific Research Project of Changjiang Waterway Regulation(Grants No.SXHXGZ-2020-4,SXHXGZ-2022-1,and QD20190608-4).
文摘Hydrological,sediment,and bathymetric data of the Shashi Reach in the middle Yangtze River for the period of 1975-2018 were collected,and the characteristics of low water level changes and their impacts on utilization of water depth for navigation were investigated.The results showed that,during the study period,the Shashi Reach riverbed was significantly scoured and incised,with cross-sectional profiles showing overall narrowing and deepening.This indicated a strong potential to improve the water depth of the channel.The analysis of the temporal variation of in-channel topographical features showed that the Taipingkou diara underwent siltation and erosion,with its head gradually scoured and relocated downstream after 2008,and the Sanbatan diara continued to shrink and migrate leftwards.Low water levels with the same flow rate over the study period decreased.For instance,from 2003 to 2020,the water level at the Shashi hydrological station decreased to 1.37 m with a flow rate of 6000 m^(3)/s.Furthermore,the designed minimum navigable water level of the Shashi Reach was approximately 2.11m lower than the recommended level.In terms of utilization of the channel water depth,continuous scouring of the river channel is expected to result in a reduction in discharge at the Taipingkou mouth,which will improve the water depth conditions of the channel during the dry season in the Shashi Reach.With several channel regulation projects,the 3.5-m depth of the Shashi Reach would basically be unobstructed.This promotes utilization of the shipping route from the Taipingkou south branch to the Sanbatan north branch as the main navigation channel during the dry season.Considering the factors of current water depth and the clear width limitation of the navigation hole at the Jingzhou Yangtze River Bridge,this route can still be favored as the main navigation channel with a 4.5-m depth during the dry season.
文摘The water resources of rivers and reservoirs with a five-meter drop are used to discuss the technical theory and the cost and practical value of equipment cases.The high-quality development technology of water resources explored in this paper provides a feasible plan for achieving the goal of innovation to zero.
文摘针对成子河船闸需穿越多重水系,闸位选择受限因素多且引航道通航水流条件复杂的问题,船闸平面布置从水系连通、防洪规划、通航安全、对灌溉排涝的影响、船闸运营管理、征地拆迁和投资等多方面进行了技术经济比选。通过数模在引航道与上下游交叉河流处分别限定300、120 m 3 s最大安全通航流量条件,并采用疏浚拓挖增加过水断面和设置导流墙调整主流方向,改善了船闸引航道的通航水流条件。对复杂水系条件下的船闸闸位选择和平面布置有借鉴意义。