期刊文献+
共找到4,493篇文章
< 1 2 225 >
每页显示 20 50 100
AHFO-based soil water content sensing technology considering soil-sensor thermal contact resistance
1
作者 Mengya Sun Peng Wu +6 位作者 Bin Shi Jin Liu Jie Liu Juncheng Yao Yipin Lu Yunqiang Wang Xiaoyan Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2715-2731,共17页
The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual applicatio... The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual application of AHFO technology to the water content measurement of in situ soil.However,all existing in situ applications of AHFO technology fail to consider the effect of soilesensor contact quality on water content measurements,limiting potential for the wider application of AHFO technology.To address this issue,the authors propose a method for determining the soilesensor thermal contact resistance based on the principle of an infinite cylindrical heat source.This is then used to establish an AHFO water content measurement technology that considers the thermal contact resistance.The reliability and validity of the new measurement technology are explored through a laboratory test and a field case study,and the spatial-temporal evolution of the soil water content in the case is revealed.The results demonstrate that method for determining the soilesensor thermal contact resistance is highly effective and applicable to all types of soils.This method requires only the moisture content,dry density,and thermal response of the in situ soil to be obtained.In the field case,the measurement error of soil water content between the AHFO method,which takes into account the thermal contact resistance,and the neutron scattering method is only 0.011.The water content of in situ soil exhibits a seasonal variation,with an increase in spring and autumn and a decrease in summer and winter.Furthermore,the response of shallow soils to precipitation and evaporation is significant.These findings contribute to the enhancement of the accuracy of the AHFO technology in the measurement of the water content of in situ soils,thereby facilitating the dissemination and utilization of this technology. 展开更多
关键词 soil water content Actively heated fiber-optic(AHFO) technology soilesensor thermal contact resistance RELIABILITY in situ application
下载PDF
Spatial variability of soil water content and related factors across the Hexi Corridor of China 被引量:13
2
作者 LI Xiangdong SHAO Ming'an +1 位作者 ZHAO Chunlei JIA Xiaoxu 《Journal of Arid Land》 SCIE CSCD 2019年第1期123-134,共12页
Soil water content(SWC) is a key factor limiting ecosystem sustainability in arid and semi-arid areas of the Hexi Corridor of China, which is characterized by an ecological environment that is vulnerable to climate ch... Soil water content(SWC) is a key factor limiting ecosystem sustainability in arid and semi-arid areas of the Hexi Corridor of China, which is characterized by an ecological environment that is vulnerable to climate change. However, there is a knowledge gap regarding the large-scale spatial distribution of SWC in this region. The specific objectives of this study were to determine the spatial distribution patterns of SWC across the Hexi Corridor and identify the factors responsible for spatial variation of SWC at a regional scale. This study collected and analyzed SWC in the 0–100 cm soil profile from 109 field sampling sites(farmland, grassland and forestland) across the Hexi Corridor in 2017. We selected 17 factors, including land use, topography(latitude, longitude, elevation, slope gradient, and slope aspect), soil properties(soil clay content, soil silt content, soil bulk density, saturated hydraulic conductivity, field capacity, and soil organic carbon content), climate factors(mean annual precipitation, potential evaporation, and aridity index), plant characteristic(vegetation coverage) and planting pattern(irrigation or rain-fed), as possible environmental variables to analyze their effects on SWC. The results showed that SWC was 0.083(±0.067) g/g in the 0–100 cm soil profile and decreased in the order of farmland, grassland and forestland. The SWC in the upper soil layers(0–20, 20–40 and 40–60 cm) had obvious difference when the mean annual precipitation differed by 200 mm. The SWC decreased from southeast to northwest following the same pattern as precipitation, and had a moderate to strong spatial dependence in a large effective range(75–378 km). The SWC showed a similar distribution and had no significant difference between soil layers in the 0–100 cm soil profile. The principal component analysis showed that the mean annual precipitation, geographical position(longitude and latitude) and soil properties(soil bulk density and soil clay content) were the main factors dominating the variance of environmental variables. A stepwise linear regression equation showed that plant characteristic(vegetation coverage) and soil properties(soil organic carbon content, field capacity and soil clay content) were the optimal factors to predict the variation of SWC. Soil clay content could be better to explain the SWC variation in the deeper soil layers compared with the other factors. 展开更多
关键词 soil water content spatial variability geostatistical analysis soil CLAY content Hexi CORRIDOR
下载PDF
Spatio-temporal variations of soil water content and salinity around individual Tamarix ramosissima in a semi-arid saline region of the upper Yellow River, Northwest China 被引量:5
3
作者 yang benman wang ruoshui +2 位作者 xiao huijie cao qiqi liu tao 《Journal of Arid Land》 SCIE CSCD 2018年第1期101-114,共14页
Ecological restoration by Taman'x plants on semi-arid saline lands affects the accumulation, distribution patterns and related mechanisms of soil water content and salinity. In this study, spatio-temporal variations ... Ecological restoration by Taman'x plants on semi-arid saline lands affects the accumulation, distribution patterns and related mechanisms of soil water content and salinity. In this study, spatio-temporal variations of soil water content and salinity around natural individual Tamarix ramosissiraa Ledeb. were invetigated in a semi-arid saline region of the upper Yellow River, Northwest China. Specifically, soil water content, electrical conductivity (EC), sodium adsorption ratio (SARa), and salt ions (including Na+, K+, Ca2+, Mg2+ and 8042-) were measured at different soil depths and at different distances from the trunk of T. ramasissima in May, July, and September 2016. The soil water content at the 20-80 cm depth was significantly lower in July and September than in May, indicating that T. ramosissima plants absorb a large amount of water through the roots during the growing period, leading to the decreasing of soil water content in the deep soil layer. At the 0-20 cm depth, there was a salt island effect around individual T. ramosissima, and the ECe differed significantly inside and outside the canopy of T. ramosissima in May and July. Salt bioaccumulation and stemflow were two major contributing factors to this difference. The SAR at the 0-20 cm depth was significantly different inside and outside the canopy of T. ramosissima in the three sampling months. The values of SAR~ at the 60-80 cm depth in May and July were significantly higher than those at the 0-60 cm depth and higher than that at the corresponding depth in September. The distribution of Na+ in the soil was similar to that of the SAI, while the concentrations of K+, Ca2+, and Mg2+ showed significant differences among the sampling months and soil depths. Both season and soil depth had highly significant effects on soil water content, ECe and SARa, whereas distance from the trunk of T. ramosissima only significantly affected ECe. Based on these results, we recommend co-planting of shallow-rooted salt-tolerant species near the Tamarx plants and avoiding planting herbaceous plants inside the canopy of T. ramodssima for afforestation in this semi-arid saline region. The results of this study may provide a reference for appropriate restoration in the semi-arid saline regions of the upper Yellow River. 展开更多
关键词 Tamarix ramosisdma soil water content electrical conductivity sodium adsorption ratio saline soil YellowRiver
下载PDF
Assessment of Soil Water Content in Field with Antecedent Precipitation Index and Groundwater Depth in the Yangtze River Estuary 被引量:5
4
作者 XIE Wen-ping YANG Jing-song 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第4期711-722,共12页
To better understand soil moisture dynamics in the Yangtze River Estuary (YRE) and predict its variation in a simple way, a field monitoring experiment was carried out along the north branch of the Yangtze River, wh... To better understand soil moisture dynamics in the Yangtze River Estuary (YRE) and predict its variation in a simple way, a field monitoring experiment was carried out along the north branch of the Yangtze River, where seawater intrusion was strong and salt-water variation is one of the limiting factors of local agriculture. In present paper, relation between antecedent precipitation index (API) and soil water content is studied, and effects of groundwater depth on soil water content was analyzed. A relatively accurate prediction result of soil water content was reached using a neural network model. The impact analysis result showed that the variation of the API was consistent with soil water content and it displayed significant correlations with soil water content in both 20 and 50 cm soil layer, and higher correlation was observed in the layer of 20 cm. Groundwater impact analysis suggested that soil moisture was affected by the depth of groundwater, and was affected more greatly by groundwater at depth of 50 cm than that at 20 cm layer. By introducing API, groundwater depth and temperature together, a BP artificial network model was established to predict soil water content and an acceptable agreement was achieved. The model can be used for supplementing monitoring data of soil water content and predicting soil water content in shallow groundwater areas, and can provide favorable support for the research of water and salt transport in estuary area. 展开更多
关键词 antecedent precipitation index groundwater depth soil water content ASSESSMENT
下载PDF
Seasonal dynamics of soil water content in the typical vegetation and its response to precipitation in a semi-arid area of Chinese Loess Plateau 被引量:6
5
作者 ZHOU Tairan HAN Chun +3 位作者 QIAO Linjie REN Chaojie WEN Tao ZHAO Changming 《Journal of Arid Land》 SCIE CSCD 2021年第10期1015-1025,共11页
Soil water content is a key limiting factor for vegetation growth in the semi-arid area of Chinese Loess Plateau and precipitation is the main source of soil water content in this area.To further understand the impact... Soil water content is a key limiting factor for vegetation growth in the semi-arid area of Chinese Loess Plateau and precipitation is the main source of soil water content in this area.To further understand the impact of vegetation types and environmental factors such as precipitation on soil water content,we continuously monitored the seasonal dynamics in soil water content in four plots(natural grassland,Caragana korshinskii,Armeniaca sibirica and Pinus tabulaeformis)in Chinese Loess Plateau.The results show that the amplitude of soil water content fluctuation decreases with an increase in soil depth,showing obvious seasonal variations.Soil water content of artificial vegetation was found to be significantly lower than that of natural grassland,and most precipitation events have difficulty replenishing soil water content below a depth of 40 cm.Spring and autumn are the key seasons for replenishment of soil water by precipitation.Changes in soil water content are affected by precipitation,vegetation types,soil evaporation and other factors.The interception effect of vegetation on precipitation and the demand for water consumption by transpiration are the key factors affecting the efficiency of soil water replenishment by precipitation in this area.Due to artificial vegetation plantation in this area,soil will face a water deficit crisis in the future. 展开更多
关键词 soil water content vegetation type PRECIPITATION seasonal change EVAPORATION
下载PDF
COMPARATIVE STUDY ON DROUGHT RESISTANCE OF LARIX OLGENSIS HENRY AND PINUS SYLVESTRIS VAR.MONGOLICA(Ⅰ)──THE INFLUENCE OF SOIL WATER CONTENT ON SEEDLINGS PLANTING IN FLOWERPOT 被引量:4
6
作者 冯玉龙 王文章 朱虹 《Journal of Northeast Forestry University》 SCIE CAS CSCD 1996年第2期1-5,共5页
Water potential (φ w .) and net photosynthetic rate (Pn) of Larix olgensis and Pinns.sylvestris var. mongolica deercased with the deerease of soil water content φw and Pn of L.olgensis changed hardly during the fi... Water potential (φ w .) and net photosynthetic rate (Pn) of Larix olgensis and Pinns.sylvestris var. mongolica deercased with the deerease of soil water content φw and Pn of L.olgensis changed hardly during the first 9 davs after stopping watering, then deereased sharply at the 10th dav Pn of P sylvestris var mongolica deereased slightly during the lirst 8 days, then deereased sharply at the 9th day Their respiration rate, chlorophyll content and their a/b ratio changed hardly. The tollowing 3 conclusions were obtained and discussed exhaustively . (Ⅰ) φ w can be used to direct watering as a sensitive index of judging whether L. olgensis and P.sylvestris var. mongolica lacking water (2 )The deereasc of Pn of L. olgensis and P. sylvestris var. mongolica when drought had nothing to do with chlorophyll. (3) P. sylvestris var. mongolica had morphological drought resistance . while L,olgensis had physiological drought resistance, and their drought resistance was discnssed comparatively first time. 展开更多
关键词 Larix olgensis Henry Pinus sylvestris var.mongolica soil water content water potential Net photosynthetic rate
下载PDF
Spatial heterogeneity of soil water content in the reversion process of desertification in arid areas 被引量:3
7
作者 QuanLin MA Fang CHENG +3 位作者 YouJun LIU FangLin Wang DeKuai ZHANG HuJia JIN 《Journal of Arid Land》 SCIE 2011年第4期268-277,共10页
Sandy soils in arid,rain-fed environments have low and limited water content,which is a principal factor limiting vegetation development,and a key constraint controlling the structure and functions of the ecological s... Sandy soils in arid,rain-fed environments have low and limited water content,which is a principal factor limiting vegetation development,and a key constraint controlling the structure and functions of the ecological systems in arid areas.The spatial heterogeneity of soil water content is a major soil property,and a focus of soil science and hydrology.On the southern edge of the Tengger Desert,sample plots were selected from mobile sand dunes in desertified lands that had been enclosed for 5,15 and 25 years,respectively.This study explored the dynamic and spatial heterogeneity of soil water content in these different layers of soil that were also in the reversion process of desertification.The results showed that the soil water content of the mobile sand dunes was highest when in the initial stages of the reversion process of desertification,while the soil water content in the 0-20 cm,20-40 cm and 40-60 cm layers of soil was 1.769%,3.011%,and 2.967% respectively,presenting a restoring tendency after 25 years of enclosure.There were significant differences,as a whole,in the soil water content among different restoration stages and different soil layers,respectively.Changes in soil water content,in different soil layers,at different restoration stages,exhibited exponential or spherical patterns.The spatial distribution of soil water content exhibited a mosaic patch pattern with obvious spatial heterogeneity.The ratio of the heterogeneity of spatial autocorrelation to gross spatial heterogeneity was greater than 50%.The gross spatial heterogeneity of the 0-20 cm layer of soil improved gradually,while those of the 20-40 cm and 40-60 cm layers improved initially,then weakened in the reversion process of desertification.This study revealed that restoration with sand-binding vegetation reduced soil water content,and increased its spatial heterogeneity in arid areas.However,after 25 years of vegetation-soil system restoration,the soil water content started to increase and its spatial heterogeneity started to weaken.These results will further benefit the understanding of the ecological mechanism between soil water and sand-binding vegetation. 展开更多
关键词 Tengger Desert reversion process of desertification soil water content sand-binding vegetation geostatistical analysis
下载PDF
Response of forestland soil water content to heavy rainfall on Beijing Mountain, northern China 被引量:2
8
作者 Jianbo Jia Xinxiao Yu Yitao Li 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第3期541-550,共10页
Continuous recording of precipitation and soil water content(SWC), especially during long periods of torrential rainfall, has proven challenging. Over a 16 h period spanning 21-22 July, 2012, Beijing experienced his... Continuous recording of precipitation and soil water content(SWC), especially during long periods of torrential rainfall, has proven challenging. Over a 16 h period spanning 21-22 July, 2012, Beijing experienced historic rainfall that totaled 164.4 mm. We used large lysimeter technology in four forested plots to record precipitation and variation in SWC at 10-min intervals to quantify the response of forestland SWC to heavy rainfall in a semi-arid area. Mean,maximum and minimum rainfall intensities were 23.4, 46.8and 12.0 mm/h, respectively. Rainfall was concentrated in 2-6 mm bursts that accounted for 67.32 % of the total rainfall event. Soil moisture conditions in this region are strongly dependent on patterns of precipitation. Water infiltration into 20, 40, 60, 80, 100, 120 and 160 cm soil layers required 1, 5,20, 37, 46, 52 and 61 mm of precipitation, respectively, and to fully saturate these soil layers required 80, 120, 140, 150, 180,200 and 220 mm of precipitation, respectively. 展开更多
关键词 Semi-arid region soil water content soilwater deficit LYSIMETER
下载PDF
Effects of soil temperature and soil water content on soil respiration in three forest types in Changbai Mountain 被引量:9
9
作者 王淼 李秋荣 +1 位作者 肖冬梅 董百丽 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第2期113-118,i002,共7页
Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coni... Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coniferous forest (mountain brown coniferous forest soil) and erman's birch forest (mountain soddy forest soil) in Changbai Mountain in September 2001. The soil water content was adjusted to five different levels (9%, 21%, 30%, and 43%) by adding certain amount of water into the soil cylinders, and the soil sample was incubated at 0, 5, 15, 25 and 35°C for 24 h. The results indicated that in broad-leaved/Korean pine forest the soil respiration rate was positively correlated to soil temperature from 0 to 35°C. Soil respiration rate increased with increase of soil water content within the limits of 21% to 37%, while it decreased with soil water content when water content was over the range. The result suggested the interactive effects of temperature and water content on soil respiration. There were significant differences in soil respiration among the various forest types. The soil respiration rate was highest in broad-leaved/Korean pine forest, middle in erman's birch forest and the lowest in dark coniferous forest. The optimal soil temperature and soil water content for soil respiration was 35°C and 37% in broad-leaved/Korean pine forest, 25°C and 21% in dark coniferous forest, and 35°C and 37% in erman's birch forest. Because the forests of broad-leaved/Korean pine, dark coniferous and erman's birch are distributed at different altitudes, the soil temperature had 4–5°C variation in different forest types during the same period. Thus, the soil respiration rates measured in brown pine mountain soil were lower than those in dark brown forest and those measured in mountain grass forest soil were higher than those in brown pine mountain soil. Key words Soil temperature - Soil water content - Soil respiration - The typical forest ecosystem in Changbai Mountain CLC number S7118.51 Document code A Foundation item: This study was supported by grant from the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-12) and the grant from Advanced Programs of Institute of Applied Ecology Chinese Academy of Sciences.Biography: WANG Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China.Responsible editor: Song Funan 展开更多
关键词 soil temperature soil water content soil respiration the typical forest ecosystem in Changbai Mountain
下载PDF
Characteristics of Soil Porosity and Changes of Soil Water Content in Eucalyptus Plantation 被引量:1
10
作者 熊柳梅 黄金生 +7 位作者 曾艳 黄雁飞 陈桂芬 刘永贤 周柳强 谭宏伟 黄美福 黄玉溢 《Agricultural Science & Technology》 CAS 2015年第4期662-667,共6页
Objective] This study almed to investigate the characteristics of soiI total porosity (STP) and various factors affecting soiI water content (SWC) in eucalyptus pIantation (EP), thereby providing references for ... Objective] This study almed to investigate the characteristics of soiI total porosity (STP) and various factors affecting soiI water content (SWC) in eucalyptus pIantation (EP), thereby providing references for soiI water utiIization in eucalyptus pIanting in the red soiI hiI y region of South China. [Method] In the same cIimatic region, soiI sampIes were coI ected from surface soiI Iayer (A), iI uvial horizon (B) and parent material horizon (C) in the upper sIope, middIe sIope and Iower sIope of eucalyptus pIantation, native forest and pine forest, respectiveIy, to determine the soiI porosity and soiI water content and analyze changes and various infIuencing factors of soiI water content in horizontal and vertical direction. [Result] Average soiI porosity in eucalyptus pIantation, native forest and pine forest was 45.9%, 41.4%and 55.3%, respectiveIy; soiI water content in these three forest stands was 13.3%, 13.4% and 15.5%, respectiveIy. In addition, soiI water content in these three forest stands exhibited no significant differences (P&gt;0.05) among different soiI profiIes and sIope positions, but soiI water content in surface soiI Iayer varied significantIy (P&lt;0.05) among different forest stands; in the horizontal direction, soiI water content exerted an extremeIy significant positive correIation with total coverage. [Conclusion] Total coverage of canopy Iayer, herb and Iitter Iayer is one of the most critical fac-tors affecting the changes of soiI water content in surface soiI Iayer of forest stands. 展开更多
关键词 Eucalyptus plantatlon soil porosity Changes of soil water content Red soli Hilly reglon South China
下载PDF
Effects of Relative Soil Water Content on Antioxidant Enzyme System in Malus sieversii(Lebed.) Roem 被引量:1
11
作者 徐佳宁 刘钢 王文军 《Agricultural Science & Technology》 CAS 2016年第6期1281-1284,共4页
By pot experiment under artificially simulated water stress conditions, soluble protein content, MDA content and SOD, POD, CAT and APX activities in Malus sieversfi leaves were determined to reveal the response mechan... By pot experiment under artificially simulated water stress conditions, soluble protein content, MDA content and SOD, POD, CAT and APX activities in Malus sieversfi leaves were determined to reveal the response mechanism of M. sieversii to changes of relative soil water content. According to the results, with the decrease of relative soil water content, MDA content in M. sieversii leaves increased by mem- brane lipid peroxidation. Cells resist water stress-induced membrane lipid peroxidation and clear the increased reactive oxygen species by improving soluble protein content and SOD, POD, CAT and APX activities. However, various enzymes were involved in the response to water stress under different moisture conditions. In addition, the results indicated that M. sieversii had a good adaptability to higher relative soil water contents. 展开更多
关键词 Malus sieversii (Lebed.) Roem. Relative soil water content Membrane lipid peroxidation Antioxidant enzyme system
下载PDF
Study on the Major and Trace Elements in Soil of Yunnan Farmland
12
作者 徐娟 刘刚 +3 位作者 赵兴祥 赵帅群 任静 胡建飞 《Agricultural Science & Technology》 CAS 2014年第12期2141-2144,共4页
In order to investigate the distribution of soil available micronutrients, and provide a theoretical basis for management of fertilizing reasonably on crops, the contents of major and trace elements (P, K, Ca, Mg, Cu... In order to investigate the distribution of soil available micronutrients, and provide a theoretical basis for management of fertilizing reasonably on crops, the contents of major and trace elements (P, K, Ca, Mg, Cu, Fe, Zn, and Mn) in farm- land soil collected from Yunnan Province were determined by inductively coupled plasma-mass spectrometry (ICP-MS), the contents and distribution of major and trace elements were also studied. The results showed that the contents of available P, K were balance, available Ca, Mg were deficient, and available Cu, Fe, Zn, Mn were very plentiful. Major and trace elements distribution of different landform areas were obviously different. The contents of trace elements (Fe, Zn and Mn) of central Yunnan Red Plateau were significantly higher than those of Hengduan Mountains in western Yunnan and those of karst plateau in eastern Yunnan. The contents of available P, K, and Ca gradually declined from west to east, while the content of available Cu rose gradually from west to east. The results are reference value to elements determination and agricultural production in farmland soils. 展开更多
关键词 ICP-MS soil of Yunnan farmland Major elements Trace elements content
下载PDF
Straw interlayer improves sunflower root growth:Evidence from moisture and salt migration and the microbial community in saline-alkali soil
13
作者 Mengmeng Chen Guoli Wang +9 位作者 Yupeng Jing Jie Zhou Jiashen Song Fangdi Chang Ru Yu Jing Wang Weini Wang Xia Sun Hongyuan Zhang Yuyi Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第11期3870-3881,共12页
A straw interlayer added to soil can effectively reduce soil salinity effects on plant growth,however,the effects of soil moisture,salt and microbial community composition on plant growth under a straw interlayer are ... A straw interlayer added to soil can effectively reduce soil salinity effects on plant growth,however,the effects of soil moisture,salt and microbial community composition on plant growth under a straw interlayer are unclear.A rhizobox study was conducted to investigate the role of straw interlayer thickness on soil moisture,salt migration,microbial community composition,as well as root growth in sunflower.The study included four treatments:Control(no straw interlayer);S3(straw interlayer of 3.0 cm);S5(straw interlayer of 5.0 cm);S7(straw interlayer of 7.0 cm).Straw interlayer treatments increased soil moisture by 8.2–11.0%after irrigation and decreased soil salt content after the bud stage in 0–40 cm soil.Total root length,total root surface area,average root diameter,total root volume and the number of root tips of sunflower plants were higher under straw interlayer treatments than in the control,and were the highest under the S5 treatment.This stimulated root growth was ascribed to the higher abundance of Chloroflexi and Verrucomicrobia bacteria in soil with a straw interlayer,which was increased by 55.7 and 54.7%,respectively,in the S5 treatment.Addition of a straw interlayer of 5 cm thickness is a practical and environmentally feasible approach for improving sunflower root growth in saline-alkali soil. 展开更多
关键词 saline-alkali soil RHIZOBOX soil water soil salt content bacterial community
下载PDF
Experimental investigation into the salinity effect on the physicomechanical properties of carbonate saline soil
14
作者 Jiejie Shen Qing Wang +3 位作者 Yating Chen Xuefei Zhang Yan Han Yaowu Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1883-1895,共13页
For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This stu... For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This study examines the Atterberg limits,shear strength,and compressibility of carbonate saline soil samples with different NaHCO3 contents in Northeast China.The mechanism underlying the influence of salt content on soil macroscopic properties was investigated based on a volumetric flask test,a mercury intrusion porosimetry(MIP)test,and a scanning electron microscopic(SEM)test.The results demonstrated that when NaHCO3 contents were lower than the threshold value of 1.5%,the bound water film adsorbed on the surface of clay particles thickened continuously,and correspondingly,the Atterberg limits and plasticity index increased rapidly as the increase of sodium ion content.Meanwhile,the bonding force between particles was weakened,the dispersion of large aggregates was enhanced,and the soil structure became looser.Macroscopically,the compressibility increased and the shear strength(mainly cohesion)decreased by 28.64%.However,when the NaHCO3 content exceeded the threshold value of 1.5%,the salt gradually approached solubility and filled the pores between particles in the form of crystals,resulting in a decrease in soil porosity.The cementation effect generated by salt crystals increased the bonding force between soil particles,leading to a decrease in plasticity index and an improvement in soil mechanical properties.Moreover,this work provides valuable suggestions and theoretical guidance for the scientific utilization of carbonate saline soil in backfill engineering projects. 展开更多
关键词 Carbonate saline soil Salt content Physicomechanical properties Bound water MICROSTRUCTURE
下载PDF
Swelling pressure evolution characterization of strong expansive soil considering the influence of reserved expansion deformation
15
作者 LI Tianguo KONG Lingwei +1 位作者 GUO Aiguo YAN Junbiao 《Journal of Mountain Science》 SCIE CSCD 2024年第1期252-270,共19页
Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective struc... Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective structure to experience bulging failure due to excessive swelling pressure. To investigate the swelling pressure properties of expansive soil, the constant volume test was employed to study the influence of water content and reserved expansion deformation on the characteristics of swelling pressure in strong expansive soils, and also to explore the evolution mechanism of the swelling pressure. The findings demonstrate that the swelling pressure-time curve can be classified into swelling pressure-time softening and swelling pressure-time stability type. The swelling pressuretime curve of the specimen with low water content is the swelling pressure-time softening type, and the softening level will be weakened with increasing reserved expansion deformation. Besides, the maximum swelling pressure Psmax decreases with increasing water content and reserved expansion deformation, especially for expansion ratio η from 24% to 37%. The reserved deformation has little effect on reducing Psmax when it is beyond 7% of the expansion rate. The specimen with low water content has a more homogeneous structure due to the significant expansion-filling effect, and the fracture and reorganization of the aggregates in the specimens with low water content cause the swelling pressure-time softening behavior. In addition, the proposed swelling pressure-time curve prediction model has a good prediction on the test results. If necessary, a deformation space of about 7% expansion rate is recommended to be reserved in the engineering to reduce the swelling pressure except for keeping a stable water content. 展开更多
关键词 Expansive soil Swelling pressure Reserved expansion deformation water content
下载PDF
Effects of gravel on the water absorption characteristics and hydraulic parameters of stony soil
16
作者 MA Yan WANG Youqi +2 位作者 MA Chengfeng YUAN Cheng BAI Yiru 《Journal of Arid Land》 SCIE CSCD 2024年第7期895-909,共15页
The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different... The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas. 展开更多
关键词 stony soil gravel content water absorption characteristics hydraulic parameters one-dimensional horizontal soil column absorption experiment van Genuchten model eastern foothills of Helan Mountains
下载PDF
Relationship Between Canopy Temperature at Flowering Stage and Soil Water Content,Yield Components in Rice 被引量:11
17
作者 ZHANG Wen-zhong HAN Ya-dong DU Hong-juan 《Rice science》 SCIE 2007年第1期67-70,共4页
The canopy temperature of rice at the flowering stage and the soil water content were investigated under different soil water treatments (the soil water contents were 24%, 55%, 90% and 175% at the flowering stage). ... The canopy temperature of rice at the flowering stage and the soil water content were investigated under different soil water treatments (the soil water contents were 24%, 55%, 90% and 175% at the flowering stage). The canopy temperature was lower than air temperature, and the soil water content significantly influenced the canopy temperature. The lower the soil water content, the higher the canopy temperature, the less the accumulative absolute value of canopy-air temperature difference. Moreover, the maximum difference between treatments and CK in the accumulative absolute value of canopy-air temperature difference appeared at 13:00 μm. in a day, thus, it could be considered as a suitable measuring time. Under the lowest water content treatment, the peak flowering occurred in the first three days (about 70% of panicles flowered), resulting in shortened and lightened panicle of rice. As to the CK and the high water content treatments, the peak flowering appeared in the middle of flowering duration, with longer panicle length and higher panicle weight. Results indicated the lower the soil water content, the less the filled grain number and grain yield. 展开更多
关键词 RICE canopy temperature soil water content yield components
下载PDF
Effects of vegetation types on soil water dynamics during vegetation restoration in the Mu Us Sandy Land, northwestern China 被引量:10
18
作者 Yu Xiaona Huang Yongmei +2 位作者 Li Engui Li Xiaoyan Guo Weihua 《Journal of Arid Land》 SCIE CSCD 2017年第2期188-199,共12页
The arid and semi-arid northwestern China has been undergoing ecological degradation and the efforts to reverse the ecological degradation have been undertaken for many years. Some shifting dunes have been fixed and t... The arid and semi-arid northwestern China has been undergoing ecological degradation and the efforts to reverse the ecological degradation have been undertaken for many years. Some shifting dunes have been fixed and the vegetation has been partially recovered in certain areas and the Mu Us Sandy Land in the Ordos Plateau is an example of the success. The present study attempts to reveal the relationships between the vegetation restoration and ecohydrology in the Mu Us Sandy Land. We continuously measured soil water content at 10-min intervals under three vegetation types (i.e., shifting dune, shrub-dominated community, and herb-dominated community) in the Mu Us Sandy Land from April 2012 to October 2013. The results show the infiltration coefficient increased with increased rainfall amount and eventually reached a stable value. Infiltration coefficients were 0.91, 0.64, and 0.74 in the shifting dune, in the shrub-dominated community, and in the herb-dominated community, respectively. Cumulative infiltration and soil texture are two vital factors affecting the depths of rainfall penetration. Only rainfall events larger than 35.0 mm could recharge soil water at the 60-80 cm layer in the herb-dominated community. Our results imply that the expected forward succession of restored vegetation may be destined to deterioration after reaching the climax simply because of following two facts: (1) soil water is mainly retained at shallower layer and (2) plant fine roots mainly distribute in deeper layer in the herb-dominated community. 展开更多
关键词 ECOHYDROLOGY soil water content vegetation restoration Artemisia ordosica community
下载PDF
Spatial distribution of water-active soil layer along the south-north transect in the Loess Plateau of China 被引量:6
19
作者 ZHAO Chunlei SHAO Ming'an +2 位作者 JIA Xiaoxu HUANG Laiming ZHU Yuanjun 《Journal of Arid Land》 SCIE CSCD 2019年第2期228-240,共13页
Soil water is an important composition of water recycle in the soil-plant-atmosphere continuum.However, intense water exchange between soil-plant and soil-atmosphere interfaces only occurs in a certain layer of the so... Soil water is an important composition of water recycle in the soil-plant-atmosphere continuum.However, intense water exchange between soil-plant and soil-atmosphere interfaces only occurs in a certain layer of the soil profile. For deep insight into water active layer(WAL, defined as the soil layer with a coefficient of variation in soil water content >10% in a given time domain) in the Loess Plateau of China,we measured soil water content(SWC) in the 0.0–5.0 m soil profile from 86 sampling sites along an approximately 860-km long south-north transect during the period 2013–2016. Moreover, a dataset contained four climatic factors(mean annual precipitation, mean annual evaporation, annual mean temperature and mean annual dryness index) and five local factors(altitude, slope gradient, land use, clay content and soil organic carbon) of each sampling site was obtained. In this study, three WAL indices(WALT(the thickness of WAL), WAL-CV(the mean coefficient of variation in SWC within WAL) and WALSWC(the mean SWC within WAL)) were used to evaluate the characteristics of WAL. The results showed that with increasing latitude, WAL-T and WAL-CV increased firstly and then decreased. WAL-SWC showed an opposite distribution pattern along the south-north transect compared with WAL-T and WAL-CV.Average WAL-T of the transect was 2.0 m, suggesting intense soil water exchange in the 0.0–2.0 m soil layer in the study area. Soil water exchange was deeper and more intense in the middle region than in the southern and northern regions, with the values of WAL-CV and WAL-T being 27.3% and 4.3 m in the middle region,respectively. Both climatic(10.1%) and local(4.9%) factors influenced the indices of WAL, with climatic factors having a more dominant effect. Compared with multiple linear regressions, pedotransfer functions(PTFs) from arti?cial neural network can better estimate the WAL indices. PTFs developed by artificial neural network respectively explained 86%, 81% and 64% of the total variations in WAL-T, WAL-SWC and WAL-CV. Knowledge of WAL is crucial for understanding the regional water budget and evaluating the stable soil water reserve, regional water characteristics and eco-hydrological processes in the Loess Plateau of China. 展开更多
关键词 water ACTIVE layer soil water content redundancy analysis pedotransfer function artificial neural network LOESS PLATEAU
下载PDF
An Improved Frequency Domain Technique for Determining Soil Water Content 被引量:13
20
作者 SUN Yu-Rui MA Dao-Kun +2 位作者 LIN Jian-Hui P. SCHULZE LAMMERS L. DAMEROW 《Pedosphere》 SCIE CAS CSCD 2005年第6期805-812,共8页
For many years a soil water content sensor with low cost, reliability and sufficient accuracy has been desirable. Thus, an improved measurement method based on the frequency domain (FD) principle for determining soil ... For many years a soil water content sensor with low cost, reliability and sufficient accuracy has been desirable. Thus, an improved measurement method based on the frequency domain (FD) principle for determining soil water content was considered. Unlike other measurement principles, a new measurable index, η, which was independent of the output impedance and the amplitude of the oscillator while relying on the electrical impedance of a multi-pin probe, was pro- posed. Moreover, a model for processing the impedance of the multi-pin soil probe was developed, and several important electrical parameters for establishing their operating ranges applicable to this probe were evaluated. In order to confirm the theoretical analysis, an experiment was conducted with a 4-pin probe. Using the developed model, the relationship between the proposed index η and soil volumetric water content was shown to be linear (R2 = 0.9921). Thus, as the measurable index, η seemed satisfactory. 展开更多
关键词 dielectric constant frequency domain principle MEASUREMENT soil water content
下载PDF
上一页 1 2 225 下一页 到第
使用帮助 返回顶部