期刊文献+
共找到18,454篇文章
< 1 2 250 >
每页显示 20 50 100
Energy, Exergy and Thermoeconomics Analysis of Water Chiller Cooler for Gas Turbines Intake Air Cooling 被引量:1
1
作者 Galal Mohammed Zaki Rahim Kadhim Jassim Majed Moalla Alhazmy 《Smart Grid and Renewable Energy》 2011年第3期190-205,共16页
Gas turbine (GT) power plants operating in arid climates suffer a decrease in output power during the hot summer months because of the high specific volume of air drawn by the compressor. Cooling the air intake to the... Gas turbine (GT) power plants operating in arid climates suffer a decrease in output power during the hot summer months because of the high specific volume of air drawn by the compressor. Cooling the air intake to the compressor has been widely used to mitigate this shortcoming. Energy and exergy analysis of a GT Brayton cycle coupled to a refrigeration air cooling unit shows a promise for increasing the output power with a little decrease in thermal efficiency. A thermo-economics algorithm is developed to estimate the economic feasibility of the cooling system. The analysis is applied to an open cycle, HITACHI-FS7001B GT plant at the industrial city of Yanbu (Latitude 24o 05” N and longitude 38o E) by the Red Sea in the Kingdom of Saudi Arabia. Result show that the enhancement in output power depends on the degree of chilling the air intake to the compressor (a 12 - 22 K decrease is achieved). For this case study, maximum power gain ratio (PGR) is 15.46% (average of 12.25%), at an insignificant decrease in thermal efficiency. The second law analysis show that the exergetic power gain ratio drops to an average 8.5%. The cost of adding the air cooling system is also investigated and a cost function is derived that incorporates time-dependent meteorological data, operation characteristics of the GT and the air intake cooling system and other relevant parameters such as interest rate, lifetime, and operation and maintenance costs. The profit of adding the air cooling system is calculated for different electricity tariff. 展开更多
关键词 Gas Turbine EXERGY Analysis Power BOOSTING Hot Climate air cooling water CHILLER
下载PDF
Application of a water cooling treatment and its effect on coal-based reduction of high-chromium vanadium and titanium iron ore 被引量:2
2
作者 Song-tao Yang Mi Zhou +3 位作者 Tao Jiang Shan-fei Guan Wei-jun Zhang Xiang-xin Xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第12期1353-1359,共7页
A water cooling treatment was applied in the coal-based reduction of high-chromium vanadium and titanium (V-Ti-Cr) iron ore from the Hongge region of Panzhihua, China. Its effects on the metallization ratio (η), ... A water cooling treatment was applied in the coal-based reduction of high-chromium vanadium and titanium (V-Ti-Cr) iron ore from the Hongge region of Panzhihua, China. Its effects on the metallization ratio (η), S removal ratio (Rs), and P removal ratio (Rp) were studied and analyzed on the basis of chemical composition determined via inductively coupled plasma optical emission spectroscopy. The metallic iron particle size and the element distribution of Fe, V, Cr, and Ti in a reduced briquette after water cooling treatment at 1350℃ were determined and observed via scanning electron microscopy. The results show that the water cooling treatment improved the η, Rs, and Rp in the coal-based reduction of V-Ti-Cr iron ore compared to those obtained with a furnace cooling treatment. Meanwhile, the particle size of metallic iron obtained via the water cooling treatment was smaller than that of metallic iron obtained via the furnace cooling treatment; however, the particle size reached 70 μm at 1350℃, which is substantially larger than the minimum particle size required (20 μm) for magnetic separation. Therefore, the water cooling treatment described in this work is a good method for improving the quality of metallic iron in coal-based reduction and it could be applied in the coal-based reduction of V-Ti-Cr iron ore followed by magnetic separation. 展开更多
关键词 MAGNETITE ore reduction water cooling METALLIZATION magnetic separation
下载PDF
Analysis of Cooling Characteristics in Datacenter Using Outdoor Air Cooling 被引量:1
3
作者 Yoshiyuki Inoue Hirofumi Hayama +2 位作者 Taro Mori Koki Kikuta Noriyuki Toyohara 《Journal of Energy and Power Engineering》 2015年第1期16-24,共9页
Advancement of the information society has proceeded with the development of information and communication technology, and a demand on a data center has increased. In such a situation, the number of servers is increas... Advancement of the information society has proceeded with the development of information and communication technology, and a demand on a data center has increased. In such a situation, the number of servers is increasing in a data center. Thus, the heat density in a data center is much higher than that of usual offices. And typically, almost 40% of the total power consumption is used for cooling servers in a data center. Thus, cooling effectiveness is one of the most important factors in evaluating the value of the data center. The data center taken up in this paper is located in Ishikari, where is a cold district in Japan. Using the cool outdoor air for cooling servers helps us to cut the power consumption for cooling. This paper first assesses the efficiency of Ishikari data center measuring the temperature of seven parts in a building where the cooling air flowing. Second, this paper describes the most efficient method for the operation and estimates 1.11 of PUE (power usage effectiveness). 展开更多
关键词 Data center cooling characteristics outdoor air cooling PUE.
下载PDF
Forced Compressed Air Cooling System for a 300 MW Steam Turbine in Waigaoqiao Power Plant
4
作者 Sun Shixiong Hua Hong Shanghai Waigaoqiao Thermal Power Plant 《Electricity》 1996年第4期22-24,共3页
The 300 MW steam turbine installed in Waigaoqiao Power Plant with combined HPIP cylinders of double casing structure is a product of the Shanghai Turbine Works utilizing licensed technology. It has a large heat storag... The 300 MW steam turbine installed in Waigaoqiao Power Plant with combined HPIP cylinders of double casing structure is a product of the Shanghai Turbine Works utilizing licensed technology. It has a large heat storage capacity and good thermal insulation, so the metal temperature of first stage of HP cylinder (FSMTI) may reach 400-450℃ after shut down and it takes 7-8 days to cool to 150℃ by natural cooling, Now with a forced cooling system the cooling time may be reduced to 40 hours, so that the turbine may be opened for repair work in about 5-6 days. The cooling system for #2 unit and test procedure are briefly described below. 展开更多
关键词 der Forced Compressed air cooling System for a 300 MW Steam Turbine in Waigaoqiao Power Plant ITI 认认 TEST 司卜 月卜 HP IP 一基
下载PDF
Numerical simulation on boiling heat transfer of evaporation cooling in a billet reheating furnace
5
作者 冯明杰 王恩刚 +2 位作者 王海 李艳东 刘兵 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第6期1515-1524,共10页
The boiling heat transfer of evaporation cooling in a billet reheating furnace was simulated.The results indicate that the bubbles easily aggregate inside of the elbow and upper side of the horizontal regions in theπ... The boiling heat transfer of evaporation cooling in a billet reheating furnace was simulated.The results indicate that the bubbles easily aggregate inside of the elbow and upper side of the horizontal regions in theπshaped support tubes.The circulation velocity increasing helps to improve the uniformity of vapor distribution and decrease the difference of vapor volume fraction between upper and down at end of the horizontal sections.With the increase of circulation velocity,the resistance loss and the circulation ratio both increase,but the former will decrease with the increase of work pressure. 展开更多
关键词 FURNACE evaporation cooling subcooled flow boiling support tube two-fluid model
下载PDF
A Novel kind of Air Cooling Bainite Nitriding Steel and Plasma Nitriding Test
6
作者 LIXin-sheng LIANGShu-rong 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第5期431-433,共3页
In order to avoid serious distortion and cracking that may occur with nitrided parts while quenching and tempering, a novel kind of air cooling bainite nitriding steel consisting of Cr, Mo, Mn and Si was developed. Af... In order to avoid serious distortion and cracking that may occur with nitrided parts while quenching and tempering, a novel kind of air cooling bainite nitriding steel consisting of Cr, Mo, Mn and Si was developed. After normalized and high temperature tempered, the tested steel has satisfactory strength, toughness and microstructure as well as good nitriding properties. 展开更多
关键词 空气冷却 贝氏体 等离子渗氮 高温回火
下载PDF
6-20 Importance of Flow Design in Water Cooling System
7
作者 Yu Haiyan Chen Wei +3 位作者 Wang Lishi Wang Dingjiu Zhu Tieming Su Yalong 《IMP & HIRFL Annual Report》 2015年第1期291-291,共1页
The Water Cooling System in Accelerator consists of three subsystems: CSR, SFC & SSC, and adopts the centralized supply mode for easy operation and convenient management. The whole system was built gradually more ... The Water Cooling System in Accelerator consists of three subsystems: CSR, SFC & SSC, and adopts the centralized supply mode for easy operation and convenient management. The whole system was built gradually more than 50 a and upgraded many times. So, all subsystems become very large and now in a status of overflow running. Now, the advantage of centralized supply mode doesn’t exist anymore. 展开更多
关键词 water cooling SYSTEM
下载PDF
Calculation of Mass Concrete Temperature Containing Cooling Water Pipe Based on Substructure and Iteration Algorithm
8
作者 Heng Zhang Chao Su +2 位作者 Zhizhong Song Zhenzhong Shen Huiguang Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期813-826,共14页
Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for... Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for evaluating the effectiveness of temperature control measures for mass concrete.One important measure for temperature control in mass concrete is the use of cooling water pipes.However,the mismatch of grids between large-scale concrete models and small-scale cooling pipe models can result in a significant waste of calculation time when using the finite element method.Moreover,the temperature of the water in the cooling pipe needs to be iteratively calculated during the thermal transfer process.The substructure method can effectively solve this problem,and it has been validated by scholars.The Abaqus/Python secondary development technology provides engineers with enough flexibility to combine the substructure method with an iteration algorithm,which enables the creation of a parametric modeling calculation for cooling water pipes.This paper proposes such a method,which involves iterating the water pipe boundary and establishing the water pipe unit substructure to numerically simulate the concrete temperature field that contains a cooling water pipe.To verify the feasibility and accuracy of the proposed method,two classic numerical examples were analyzed.The results showed that this method has good applicability in cooling pipe calculations.When the value of the iteration parameterαis 0.4,the boundary temperature of the cooling water pipes can meet the accuracy requirements after 4∼5 iterations,effectively improving the computational efficiency.Overall,this approach provides a useful tool for engineers to analyze the temperature control measures accurately and efficiently for mass concrete,such as cooling water pipes,using Abaqus/Python secondary development. 展开更多
关键词 Fourier equation cooling water pipe mass concrete iteration algorithm
下载PDF
Cooling and Optimization in the Groove of the Outer Rotor HubMotor
9
作者 Zhuo Liu Yecui Yan 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1443-1460,共18页
The external rotor hub motor adopts direct drive mode,no deceleration drive device,and has a compact structure.Its axial size is smaller than that of a deceleration-driven hub motor,which greatly reduces the weight of... The external rotor hub motor adopts direct drive mode,no deceleration drive device,and has a compact structure.Its axial size is smaller than that of a deceleration-driven hub motor,which greatly reduces the weight of the vehicle and increases the cruising range of the vehicle.Because of the limited special working environment and performance requirements,the hub motor has a small internal space and a large heat generation,so it puts forward higher requirements for heat dissipation capacity.For the external rotor hub motor,a new type of in-tank watercooled structure of hub motor was proposed to improve its cooling effect and performance.Firstly,the threedimensional finite element model of the motor is established to analyze the characteristics of motor loss and temperature field distribution.Secondly,the cooling performance of different cooling structures in the tank was studied.Finally,the thermal network model and three-dimensional finite element analysis were used to optimize the water-cooled structure in the tank,and the power density of themotor was improved by improving the cooling performance under the condition of volume limitation of the hub motor.The results show that the cooling effect of the proposed water-cooled structure in the tank is significant under the condition of constant power density.Compared to natural ventilation,the maximum temperature was reduced by 33.13°C and the cooling effect was increased by about 27.7%. 展开更多
关键词 Outer rotor hub motor temperature field water cooling in the tank motor loss thermal networks high torque density
下载PDF
Effects of air-atomized water spray cooling device structure on the quenching process,microstructure,and properties of wear-resistant steel
10
作者 WEN Shibo WU Jianfeng ZHU Jianhua 《Baosteel Technical Research》 CAS 2022年第2期35-41,共7页
With its high strength and hardness, wear-resistant steel has become an important material in the field of construction machinery manufacturing.Given that quenching technology is a crucial component of wear-resistant ... With its high strength and hardness, wear-resistant steel has become an important material in the field of construction machinery manufacturing.Given that quenching technology is a crucial component of wear-resistant steel production, the selection of the cooling method to be used during this process is important.In this study, the feasibility of quenching wear-resistant steel by air-atomized water spray cooling was studied, and the cooling rate, microstructure, and hardness of wear-resistant steel under various cooling device structures were analyzed.The results reveal that the air-atomized water spray cooling method is an effective technique in quenching wear-resistant steel.Furthermore, martensite and uniform hardness were obtained by the air-atomized water spray cooling technique.As the space between the nozzles in each row in the device increased, the cooling rate was reduced during quenching.Meanwhile, the martensite content decreased, and more carbides were observed in the martensitic structure.A mixture comprising self-tempered martensite and bainite was formed at a large distance over a longer period of time.All these factors resulted in lower hardness and worse property uniformity. 展开更多
关键词 wear-resistant steel air-atomized water spray cooling cooling rate MICROSTRUCTURE HARDNESS
下载PDF
Water, Air Emissions, and Cost Impacts of Air-Cooled Microturbines for Combined Cooling, Heating, and Power Systems: A Case Study in the Atlanta Region
11
作者 Jean-Ann James Valerie M. Thomas +2 位作者 Arka Pandit Duo Li John C. Crittenden 《Engineering》 SCIE EI 2016年第4期470-480,共11页
The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the po... The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings. 展开更多
关键词 Combined cooling heating and power (CCHP) air-cooled microturbines Distributed energy generation water for energy production Net metering
下载PDF
Enhanced Mechanical Properties of Friction Stir Welded 5083Al-H19 Joints with Additional Water Cooling 被引量:19
12
作者 B.B.Wang F.F.Chen +3 位作者 F.Liu W.G.Wang P.Xue Z.Y.Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第9期1009-1014,共6页
3-mm-thick 5083Al-H19 rolled plates were friction stir welded(FSW) at tool rotation rates of 800 and200 rpm with and without additional water cooling. With decreasing the rotation rate and applying water cooling, soft... 3-mm-thick 5083Al-H19 rolled plates were friction stir welded(FSW) at tool rotation rates of 800 and200 rpm with and without additional water cooling. With decreasing the rotation rate and applying water cooling, softening in the FSW joint was significantly reduced. At a low rotation rate of 200 rpm with additional water cooling, almost no obvious softening was observed in the FSW joint, and therefore a FSW5083Al-H19 joint with nearly equal strength to the base material(BM) was obtained. Furthermore, the grains in the nugget zone were considerably refined with reducing the heat input and ultrafine equiaxed grains of about 800 nm were obtained in the lowest heat input condition. This work provides an effective method to achieve high property FSW joints of precipitate-hardened and work-hardened Al alloys. 展开更多
关键词 Friction stir welding Aluminum alloy water cooling Microstructure Mechanical property
原文传递
Optimization of rhizosphere cooling airflow for microclimate regulation and its effects on lettuce growth in plant factory 被引量:3
13
作者 LI Kun FANG Hui +1 位作者 ZOU Zhi-rong CHENG Rui-feng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第10期2680-2695,共16页
In plant factories,the plant microclimate is affected by the control system,plant physiological activities and aerodynamic characteristics of leaves,which often leads to poor ventilation uniformity,suboptimal environm... In plant factories,the plant microclimate is affected by the control system,plant physiological activities and aerodynamic characteristics of leaves,which often leads to poor ventilation uniformity,suboptimal environmental conditions and inefficient air conditioning.In this study,interlayer cool airflow(ILCA)was used to introduce room air into plants’internal canopy through vent holes in cultivation boards and air layer between cultivation boards and nutrient solution surface(interlayer).By using optimal operating parameters at a room temperature of 28℃,the ILCA system achieved similar cooling effects in the absence of a conventional air conditioning system and achieved an energy saving of 50.8% while bringing about positive microclimate change in the interlayer and nutrient solution.This resulted in significantly reduced root growth by 41.7% without a negative influence on lettuce crop yield.Future development in this precise microclimate control method is predicted to replace the conventional cooling(air conditioning)systems for crop production in plant factories. 展开更多
关键词 air movement environmental control MICROCLIMATE water cooling root and shoot growth
下载PDF
Water cooling radiator for solid state power supply in fast-axial-flow C02 laser 被引量:3
14
作者 Heng ZHAO Bo LI +2 位作者 Wenjin WANG Yi HU Youqing WANG 《Frontiers of Optoelectronics》 EI CSCD 2016年第4期585-591,共7页
Two different flow channel configurations on thermal resistances associated with the behavior of cooling of power device were studied in this paper. ANSYS Icepak 14.0 has been adopted as a numerical simulation tool. T... Two different flow channel configurations on thermal resistances associated with the behavior of cooling of power device were studied in this paper. ANSYS Icepak 14.0 has been adopted as a numerical simulation tool. The simulation results from this study showed that the shapes of channels in cooling radiator play an important role in the thermal management of water cooling radiation system. The optimal channel design could improve the heat- dissipating efficiency by 80% in water cooling radiation system. The result also indicated that the thermal resistance of heat sinks decreased with the volumetric flow rate and the number of cylindrical columns in the flow channel. Experimental results were obtained under certain channel configurations and volume rates. Moreover, the results of numerical simulation can be explained well by the experimental results. 展开更多
关键词 heat spreader water cooling turbulencegenerator Icepak software
原文传递
Field experimental study on the cooling effect of mine cooling system acquiring cold source from return air 被引量:8
15
作者 Guo Pingye Chen Chen 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期453-456,共4页
With the increase of mining depth, more and deeper coal mines are limited by heat disaster. The cooling energy in deep mine cooling system comes from mine water inrush or ground cooling tower, but we cannot adopt the ... With the increase of mining depth, more and deeper coal mines are limited by heat disaster. The cooling energy in deep mine cooling system comes from mine water inrush or ground cooling tower, but we cannot adopt the two methods because mine water inrush in many old coal mines in China is limited. What is more, the cooling pipelines cannot be put in narrow pit-shaft. To settle the problem above, according to the characteristics of Zhangxiaolou Coal Mine, this paper adopts the deep mine return air as the cooling energy for deep mine cooling system. In addition, we carried out cite test to extract cold energy from return air. Through monitoring the water quantity, water temperature of cooling system and air temperature, we got the thermodynamic equilibrium parameters during the cooling energy acquisition analysis and the effect of cooling system that the temperature and humidity on working face are respectively reduced to 8-12 ℃ and 8-15% through cooling. This research offers experimental reference for deep mine cooling which lacks cooling energy. 展开更多
关键词 Heat disaster Cold source Return air cooling system
下载PDF
Probe design for measuring total temperature of combustor outlet based on water cooling 被引量:1
16
作者 ZHAO Kai LI Feng +2 位作者 LU Fuguo ZHOU Tao YANG Hongyu 《航空动力学报》 EI CAS CSCD 北大核心 2018年第9期2084-2092,共9页
To obtain the outlet temperature of combustor,a kind of high-temperature and water cooling thermocouple was designed.The main factors affecting the results of thermocouple measurement were analyzed after numerical sim... To obtain the outlet temperature of combustor,a kind of high-temperature and water cooling thermocouple was designed.The main factors affecting the results of thermocouple measurement were analyzed after numerical simulation.Results showed that the high-temperature water cooling thermocouple can achieve high temperature measurement under the condition of 2 400 K.With the increase of the distance between the water cooling structure and the stagnation cover,the temperature measurement result was more accurate,and the increase in the area ratio of the inlet and outlet of the stagnation cover within a reasonable range can make the measurement results more accurate.The surface emissivity of the measuring point had a great influence on the radiation error.The pressure and flow rate of cooling water can be effectively reduced after adding zirconia coating onto the surface of the rake body. 展开更多
关键词 PROBE total temperature combustion chamber water cooling THERMOCOUPLE
原文传递
Experimental Study of Air Conditioning Unit of Evaporative Cooling Assisted Mechanical Refrigeration 被引量:3
17
作者 HUANG Xiang,XU Fang-cheng,WU Jun-mei(Xi’an polytechnic University,Xi’an,Shaanxi 710048,China) 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第S1期106-110,共5页
The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analy... The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analyzed.The test shows that making full use of the evaporative cooling "free cooling" in Spring and Autumn seasons can fully meet the requirements of air-conditioned comfort through the switch of the function in different seasons.Taking into account the evaporative cooling fan and pump energy consumption,compared with the traditional mechanical refrigeration system,more than 80 percent of energy can be saved,and the energy efficiency ratio of the Unit(EER)is as high as 7.63.Using the two stages of indirect evaporative cooling to pre-cool the new wind in summer,under the conditions of the same air supply temperature requirements,0.83 kg/s chilled water saved can be equivalent to the traditional mechanical refrigeration system,and when the new wind ratio up to 50 percent,more than 10 percent load was reduced in mechanical refrigeration system.The overall EER increased about 35 percent. 展开更多
关键词 EVAPORATIVE cooling mechanical REFRIGERATION air-CONDITIONING unit EER
下载PDF
Effect of temperature, chloride ions and sulfide ions on the electrochemical properties of 316L stainless steel in simulated cooling water 被引量:3
18
作者 李金波 翟文 +1 位作者 郑茂盛 朱杰武 《Journal of Pharmaceutical Analysis》 SCIE CAS 2008年第1期33-37,60,共6页
The influence of temperature, chloride ions and sulfide ions on the anticorrosion behavior of 316L stainless steel in simulated cooling water was studied by electrochemical impedance spectroscopy and anodic polarizati... The influence of temperature, chloride ions and sulfide ions on the anticorrosion behavior of 316L stainless steel in simulated cooling water was studied by electrochemical impedance spectroscopy and anodic polarization curves. The results show that the film resistance increases with the solution temperature but decreases after 8 days’ immersion, which indicates that the film formed at higher temperature has inferior anticorrosion behavior; Chloride ions and sulfide ions have remarkable effects on the electrochemical property of 316L stainless steel in simulated cooling water and the pitting potential declines with the concentration of chloride ions; the passivation current has no obvious effect; the rise of the concentration of sulfide ions obviously increases the passivation current, but the pitting potential changes little, which indicates that the two types of ions may have different effects on destructing passive film of stainless steel. The critical concentration of chloride ions causing anodic potential curve’s change in simulated cooling water is 250 mg/L for 316 L stainless. The effect of sulfide ions on the corrosion resistance behavior of stainless steel is increasing the passivation current density Ip. The addition of 6 mg/L sulfide ions to the solution makes Ip of 316 L increase by 0.5 times. 展开更多
关键词 stainless steel TEMPERATURE chloride ions sulfide ions simulated cooling water
下载PDF
Corrosion Inhibition by Co-Immobilized Lysozyme and Lipase in Circulating Cooling Water System 被引量:3
19
作者 Liu Fang Lü Yucui +3 位作者 Jiang Guofei Chen Xiaorui Sun Juan Zhao Chaocheng 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2017年第2期21-32,共12页
The corrosion inhibition performance of co-immobilized lysozyme and lipase was investigated in a recirculating cooling water system. Four methods were carried out in co-immobilization, and the operating parameters wer... The corrosion inhibition performance of co-immobilized lysozyme and lipase was investigated in a recirculating cooling water system. Four methods were carried out in co-immobilization, and the operating parameters were optimized by using the respond surface methodology(RSM). The corrosion inhibition performance of co-immobilized lipase and lysozyme was evaluated by weight loss measurements and electrochemical measurements. The results revealed that the optimal co-immobilization method should be the sequential immobilization of lysozyme and then lipase. The inhibition efficiency was 86.10% under the optimal co-immobilized conditions. Electrochemical data showed that co-immobilized lysozyme and lipase was a mixed-type inhibitor and the corrosion inhibition efficiency was 81%. 展开更多
关键词 CIRCULATING cooling water CO-IMMOBILIZATION LYSOZYME LIPASE corrosion INHIBITION
下载PDF
An Efficient Summer Operation Scheme for a Thermal Power Plant Air Cooling System based on Electric Peak Shaving 被引量:2
20
作者 HU Hemin LIANG Shiqiang +1 位作者 JIANG Yuyan GUO Yongxian 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第2期393-407,共15页
We proposed a novel efficient operation scheme for a thermal power plant’s air-cooling system based on peak shaving, in order to cope with high ambient temperature in summer. We introduced an absorptiongeneration equ... We proposed a novel efficient operation scheme for a thermal power plant’s air-cooling system based on peak shaving, in order to cope with high ambient temperature in summer. We introduced an absorptiongeneration equipment with water/lithium working pairs into the air cooled condenser(ACC) to reconstruct the traditional thermal power plant, and established a dynamic thermodynamic model adopting Ebsilon code. We studied the thermodynamic performance variation of the reconstructed thermal power plant throughout a 24-hour cycle and found that the fluctuation ratio of the turbine back pressure decreased to 6% from 78%, which is beneficial for the stable and safe operation of the electric power system. The thermal performance improvement benefited from the exploitation of the heat transfer potential of ACC, which realized via cold duty schedule throughout the day, under different ambient temperature conditions. In this system, the generated power was higher at relatively high ambient temperature than that at relatively low ambient temperature, which solved the electricity demand-supply imbalance problem under high ambient temperature. Finally, the same optimization effects for power thermal plants with an indirect air-cooling system were obtained using the same operation scheme. 展开更多
关键词 thermal power reconstruction air cooled condenser(ACC) indirect air cooling system peak-shaving absorption-generation equipment
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部