Dam-break flows pose significant threats to urban areas due to their potential for causing rapid and extensive flooding. Traditional numerical methods for simulating these events struggle with complex urban landscapes...Dam-break flows pose significant threats to urban areas due to their potential for causing rapid and extensive flooding. Traditional numerical methods for simulating these events struggle with complex urban landscapes. This paper presents an alternative approach using Radial Basis Functions to simulate dam-break flows and their impact on urban flood inundation. The proposed method adapts a new strategy based on Particle Swarm Optimization for variable shape parameter selection on meshfree formulation to enhance the numerical stability and convergence of the simulation. The method’s accuracy and efficiency are demonstrated through numerical experiments, including well-known partial and circular dam-break problems and an idealized city with a single building, highlighting its potential as a valuable tool for urban flood risk management.展开更多
The effect of water compressibility on the seismic responses of arch dams is not well understood.In this paper,a numerical model is developed with rigorous representation of the dynamic interaction between arch dam-wa...The effect of water compressibility on the seismic responses of arch dams is not well understood.In this paper,a numerical model is developed with rigorous representation of the dynamic interaction between arch dam-water- rock foundation.The model is applied to the seismic response analysis of an arch dam with a height of 292m designed to a seismic intensity of IX.It is shown that consideration of the water compressibility clearly decreases the stress responses at key positions of the dam,while the added mass model gives a conservative estimate.展开更多
Dams for water supply usually represent an untapped hydroelectric potential. It is a small energetic potential, in most situations, usually requiring a particular solution to be viable. The use of pumps as power turbi...Dams for water supply usually represent an untapped hydroelectric potential. It is a small energetic potential, in most situations, usually requiring a particular solution to be viable. The use of pumps as power turbines often represents an alternative that enables the power generation in hydraulic structures already in operation, as is the case of dams in water supply systems. This potential can be exploited in conjunction with the implementation of PV modules on the water surface, installed on floating structures, both operating in a hydro PV hybrid system. The floating structure can also contribute to reducing the evaporation of water and providing a small increase in hydroelectric power available. This paper presents a pre-feasibility study for implementation of a hydroelectric power plant and PV modules on floating structures in the reservoir formed by the dam of Val de Serra, in southern Brazil. The dam is operated to provide drinking water to about 60% of the population of the city of Santa Maria, in the state of Rio Grande do Sul, in southern Brazil. The pre-feasibility study conducted with Homer software, version Legacy, indicated that the hydroelectric plant with a capacity of 227 kW can operate together with 60 kW of PV modules. This combination will result (in one of the configurations considered) in an initial cost of USD$ 1715.83 per kW installed and a cost of energy of USD$ 0.059/kWh.展开更多
Based on the natural and social conditions as well as hydrogeological characteristics of the Ryukyu limestone, a major aquifer in the Ryukyu Islands, a conception of underground dam, was proposed in the early 1970s in...Based on the natural and social conditions as well as hydrogeological characteristics of the Ryukyu limestone, a major aquifer in the Ryukyu Islands, a conception of underground dam, was proposed in the early 1970s in order to develop ground water resources in the Quaternary Ryukyu limestone regions of Japan. The practice of nearly thirty years has shown that the underground dam is an environment-friendly and effective way for developing ground water in these regions.展开更多
Carbon cycle is one of the focuses of climate change, river carbon is an important part, while dissolved inorganic carbon (DIC) has a high proportion of river carbon flux. In this study, we did the research on the Lan...Carbon cycle is one of the focuses of climate change, river carbon is an important part, while dissolved inorganic carbon (DIC) has a high proportion of river carbon flux. In this study, we did the research on the Lancang River, an important international river in the southwest of China. Water samples were obtained from 16 sections of the middle and lower reaches of the Lancang River in 2016 (11 months), then we monitored some water quality indicators and DIC content, finally analyzed the temporal-spatial distribution characteristics of DIC and the relationship between DIC content and water environment factors. The results showed that: (1) DIC contents in the middle and lower reaches of the Lancang River varied from 1.1840 mmol/L to 3.1440 mmol/L, with a mean value of about 2.2155 mmol/L. (2) At a time scale, DIC contents of dry season (spring, autumn and winter) were higher than rainy season (summer). At a space scale, DIC contents of the middle and lower reaches of the Lancang River gradually decreased from north to south, and each reservoir had the same characteristics, that is, DIC contents at upstream of the dam was lower than those at downstream of the dam. Compared to other rivers with cascade dams around the world, DIC contents within studied river were at similar level. And the reservoir’s effect of the Lancang River were not obvious, however, DIC contents in the water sampled upstream the dams had a slight stratification. (3) Water temperature, conductivity, turbidity were important factors affecting DIC content of water, and the effect of oxidation and reduction potential (ORP) and pH on DIC was relatively small.展开更多
The paper explores the degree of pollution of organochlorine pesticides in fish and water in the dam at Kpassa on a tributary of Okpara River that is pumped by Benin National Water agency (SONEB) in supplying drinking...The paper explores the degree of pollution of organochlorine pesticides in fish and water in the dam at Kpassa on a tributary of Okpara River that is pumped by Benin National Water agency (SONEB) in supplying drinking water to supply the city of Parakou. Doing so, fourteen parameters of organochlorine are analyzed. Most of obtain organoclorine concentration in water and fish below is indicated critical values. However, DDT and endrine concentration in water is slightly above legal tolerable values. Hexachlorobenen and dieldrine concentrations are three times higher than legal limit value while aldrine is ten times higher. However, heptachlore is double concentrated in fishery while aldrine (endrine, dieldrine aldrine, lindane, hexachloro-benzene, DDT) is found in the dam fish and surface water three times concentrated than tolerated value. These levels of concentrations result from the intensification of organoclorine pesticide used in agriculture especially in cotton production. These are caused by the chemical application accumulated in soil and through the food value chain system. Therefore, it is very important to extract sediment from the reservoir by dredging in oder to renew the ecosystem of the dam. To persistently manage the basin water resources, it is imperatively important to observe a significant behaviour changed from all stakeholders.展开更多
Garmiyan area suffers from many water problems such as poor rainfall rate, water shortage, aridity and absence of groundwater in many places. Hence the subsurface dam is the best solution due to many advantages such a...Garmiyan area suffers from many water problems such as poor rainfall rate, water shortage, aridity and absence of groundwater in many places. Hence the subsurface dam is the best solution due to many advantages such as low cost of construction, least maintenance, low evaporation, no contamination, utilization of the land over the dam and better storage. The objective of this study is to evaluate the suitability of the selected site location for subsurface dam construction, to serve as strategic water supply storage, to solute the aridity and water shortage in this area of arid to semi arid climate in Isayi watershed within the stream deposits. Geographic information systems (GIS) and remote sensing through satellite images and Digital Elevation Model (DEM) interpretation and analysis have facilitated the investigation with more accuracy. ArcGIS helped in construction of thematic maps of the studied area. The geologic, structural, geomorphologic, hydrologic and hydrogeologic characteristics with GPR survey show the suitability of the selected site location for construction of subsurface dam. According to the standard water quality for domestic, irrigation and livestock the water quality of all water samples are within the recommended range and the best time to be chosen, for construction of the subsurface dam, is during the autumn season from September to November.展开更多
The study assessed the levels of some toxic metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) with their potential ecological and human health risks in water, African Catfish (Clarias gariepinus), Tilapia (Oreochromis spilur...The study assessed the levels of some toxic metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) with their potential ecological and human health risks in water, African Catfish (Clarias gariepinus), Tilapia (Oreochromis spilurus niger) and sediment samples from the Lower Usuma dam FCT, Nigeria during two major seasons in a year (rainy and dry seasons). Toxic metal concentrations were determined using Atomic Absorption spectrophotometry (Cd, Cr, Cu, Ni, Pb and Zn) and Atomic Emission Spectrophotometry (for As and Hg), and the results obtained were compared with national and international standards. The ecological and human health risk indices of the toxic metals present in the samples from the Dam were evaluated and interpreted. Tilapia from the dam posed the highest but medium ecological and human health risk due to Pb concentration of up to 7.11 mg/kg;ecological risk index of 35.55 and hazard quotient of 50.78. Overall ecological and human health risks were low due to the low concentrations of other toxic metals determined. As, Cd, Cr, Cu, Hg, Ni and Zn concentrations were all below WHO limits in the LUD water;Ni and Pb were above limits in the African Catfish and Tilapia samples. The data obtained were analyzed using one-way analysis of variance (ANOVA) and significant differences accepted at p ≤ 0.05. There was no statistical difference in the concentrations of toxic metals in water but there was significant difference between the concentrations of toxic metals in the fish and sediment samples. Correlation was found to exist between toxic metals in the water, fish and sediment analyzed from the dam. The ecological and human health risks of toxic metals in Lower Usuma dam require regular checks and monitoring hence, it was recommended by the researcher, that this and similar research work be carried out annually by NESREA and also, as research work by other students of Environmental and Analytical chemistry.展开更多
The study was undertaken to assess the physicochemical and chemical quality of the Tannur dam water in southern Jordan. The water samples were collected in two intervals the first during May 2015 and the second during...The study was undertaken to assess the physicochemical and chemical quality of the Tannur dam water in southern Jordan. The water samples were collected in two intervals the first during May 2015 and the second during September 2015. All samples were analyzed for temperature, conductivity, dissolved oxygen, pH, major cations (Ca2+, Mg2+, K+, Na+), and major anions (Cl-, NO3-, HCO3- and SO42-). The hydrogeochemical analyses of thirty-six water samples were used to determine the properties and type of water in the Tannur dam. The ion concentration in the water samples was from dissolution of carbonate rocks and ion exchange processes in clay. The general chemistry of water samples was typical alkaline earth waters with prevailing bicarbonate chloride. The PHREEQC Hydrogeochemical modeling was used to obtain the saturation indices of specific mineral phases, which might be related to interaction with water and aquifer, and to identify the chemical species of the dissolved ions. Calcite and dolomite solubility were assessed in terms of saturation index where they show positive values indication oversaturated SI > 0. The hydrogeochemistry behavior is rather complicated and is affected by anthropogenic and natural sources. The positive correlation values between various parameters indicate that most of ions result from same lithological sources. The abundance of the major ions in water samples is in the following order: HCO3-> Ca2+ > Cl- > NO3- > SO42-) > Na+ > Mg2+ > K+. Water samples of the Tannur dam are generally very hard, high to very high saline and medium alkaline in nature. High total hardness (TH) and total dissolved solids (TDS) in some samples identify the permissible for domestic and irrigation purposes. According to the residual sodium carbonate, SAR and conductivity values, the studied water is suitable for agricultural purposes.展开更多
Composite water samples taken from Owena Multi-purpose Dam in six sampling campaigns covering the wet and dry seasons were analyzed for physico-chemical and microbial characteristics using standard methods for the exa...Composite water samples taken from Owena Multi-purpose Dam in six sampling campaigns covering the wet and dry seasons were analyzed for physico-chemical and microbial characteristics using standard methods for the examination of water and wastewater jointly published by the American Public Health Association, American Water Works Association and Water Pollution Control Federation. Results showed significant (p < 0.05) seasonal variations in most measured parameters with few showing significant spatial variation. The characteristics of the water from the dam lake revealed an acceptable quality for most measured parameters with low chemical pollutants burden when compared with drinking water standards and water quality for aquaculture. However, high values of turbidity, colour, iron, manganese and microbial load were recorded compared with drinking water standards, which call for proper treatment of the water before distribution for public consumption.展开更多
This study is an evaluation of the water potential of the Ferlo fossil valley in the Louga area in Senegal. It consisted in determining the volume of water that could be mobilized at the level of a confluence point of...This study is an evaluation of the water potential of the Ferlo fossil valley in the Louga area in Senegal. It consisted in determining the volume of water that could be mobilized at the level of a confluence point of the waters according to the flow lines, where a dam would be placed to create a reservoir. This volume of mobilizable water was compared to the average water consumption of the area in order to evaluate its adequacy or not. To do this, a delineation, physical characterization and mapping of the Ferlo watershed was done using Google Earth, Global Mapper and Arc GIS softwares. A catchment area of 28,754 sq·km was obtained with a perimeter of 976 km, an average slope of 0.52% and a hydraulic length of 336 km. Then the decennial runoff of the watershed was calculated using the CIEH method, this flow is estimated at 1120 cm/s. On the basis of this flow, the annual volume of water that can be mobilized was estimated at 11,089,758 cm per year with a solid deposits of 93 cm per year. The conclusions reached are that there is a lack of mobilizable water resources in the area and that the entire fossil valley needs to be rewatered to provide a sustainable alternative water source.展开更多
Dams in Jordan are exposed to a variety of natural and manmade threats like dams worldwide, but with some peculiar threats due to Jordan’s semi-arid climate, steep topography, tectonic activity, especially along the ...Dams in Jordan are exposed to a variety of natural and manmade threats like dams worldwide, but with some peculiar threats due to Jordan’s semi-arid climate, steep topography, tectonic activity, especially along the Jordan Rift Valley, position in the turbulent Middle East area, and weak socio-economic situation. In this study, the threats facing the main dams in Jordan are discussed and their sources are defined. The responsible agencies for reducing the threats and eliminating their sources are identified, as long as they are manmade. Natural threats are dealt with as superimposed and Jordan has to adapt to them by taking the necessary protective measures. The study concludes that all dams in Jordan are threatened by climate change and siltation and hence reduction in storage. The quality of stored water in dams, which are used for supplying drinking water such as Al-Wehdah, Wadi Al-Arab, Ziglab, Al-Wala and to a certain extent Al-Mujib is threatened by pollution due to urbanization, agricultural and industrial activities. All dams in Jordan are exposed to sabotage threats, which may negatively affect dams’ water quantities and quality. The stability of dams due to engineering failures is observed in the cases of Al-Kafrain, the left abutment of Al-Mujib, the spillway of Wheidi and eventually Al-Wala Dam. The latter was raised based on unique construction technology. The study recommends developing and implementing, as soon as possible, rigorous action plans to eliminate or, minimize the impacts of threats facing dams in Jordan.展开更多
文摘Dam-break flows pose significant threats to urban areas due to their potential for causing rapid and extensive flooding. Traditional numerical methods for simulating these events struggle with complex urban landscapes. This paper presents an alternative approach using Radial Basis Functions to simulate dam-break flows and their impact on urban flood inundation. The proposed method adapts a new strategy based on Particle Swarm Optimization for variable shape parameter selection on meshfree formulation to enhance the numerical stability and convergence of the simulation. The method’s accuracy and efficiency are demonstrated through numerical experiments, including well-known partial and circular dam-break problems and an idealized city with a single building, highlighting its potential as a valuable tool for urban flood risk management.
基金National Natural Science Foundation of China for Distinguished Young Scholar of China Under Grant No.50325826National Natural Science Foundation of China Under Grant No.50309005Science & Technology Development Project of Education Committee of Beijing Under Grant No.KM200310005017
文摘The effect of water compressibility on the seismic responses of arch dams is not well understood.In this paper,a numerical model is developed with rigorous representation of the dynamic interaction between arch dam-water- rock foundation.The model is applied to the seismic response analysis of an arch dam with a height of 292m designed to a seismic intensity of IX.It is shown that consideration of the water compressibility clearly decreases the stress responses at key positions of the dam,while the added mass model gives a conservative estimate.
基金The authors wish to thank the institutions involved for their support to research activities related to renewable energy,which resulted,among other things,in this articleSpecifically,the third author would like to thank the partial financial support provided by CNPq through a support grant for research productivity.
文摘Dams for water supply usually represent an untapped hydroelectric potential. It is a small energetic potential, in most situations, usually requiring a particular solution to be viable. The use of pumps as power turbines often represents an alternative that enables the power generation in hydraulic structures already in operation, as is the case of dams in water supply systems. This potential can be exploited in conjunction with the implementation of PV modules on the water surface, installed on floating structures, both operating in a hydro PV hybrid system. The floating structure can also contribute to reducing the evaporation of water and providing a small increase in hydroelectric power available. This paper presents a pre-feasibility study for implementation of a hydroelectric power plant and PV modules on floating structures in the reservoir formed by the dam of Val de Serra, in southern Brazil. The dam is operated to provide drinking water to about 60% of the population of the city of Santa Maria, in the state of Rio Grande do Sul, in southern Brazil. The pre-feasibility study conducted with Homer software, version Legacy, indicated that the hydroelectric plant with a capacity of 227 kW can operate together with 60 kW of PV modules. This combination will result (in one of the configurations considered) in an initial cost of USD$ 1715.83 per kW installed and a cost of energy of USD$ 0.059/kWh.
文摘Based on the natural and social conditions as well as hydrogeological characteristics of the Ryukyu limestone, a major aquifer in the Ryukyu Islands, a conception of underground dam, was proposed in the early 1970s in order to develop ground water resources in the Quaternary Ryukyu limestone regions of Japan. The practice of nearly thirty years has shown that the underground dam is an environment-friendly and effective way for developing ground water in these regions.
文摘Carbon cycle is one of the focuses of climate change, river carbon is an important part, while dissolved inorganic carbon (DIC) has a high proportion of river carbon flux. In this study, we did the research on the Lancang River, an important international river in the southwest of China. Water samples were obtained from 16 sections of the middle and lower reaches of the Lancang River in 2016 (11 months), then we monitored some water quality indicators and DIC content, finally analyzed the temporal-spatial distribution characteristics of DIC and the relationship between DIC content and water environment factors. The results showed that: (1) DIC contents in the middle and lower reaches of the Lancang River varied from 1.1840 mmol/L to 3.1440 mmol/L, with a mean value of about 2.2155 mmol/L. (2) At a time scale, DIC contents of dry season (spring, autumn and winter) were higher than rainy season (summer). At a space scale, DIC contents of the middle and lower reaches of the Lancang River gradually decreased from north to south, and each reservoir had the same characteristics, that is, DIC contents at upstream of the dam was lower than those at downstream of the dam. Compared to other rivers with cascade dams around the world, DIC contents within studied river were at similar level. And the reservoir’s effect of the Lancang River were not obvious, however, DIC contents in the water sampled upstream the dams had a slight stratification. (3) Water temperature, conductivity, turbidity were important factors affecting DIC content of water, and the effect of oxidation and reduction potential (ORP) and pH on DIC was relatively small.
文摘The paper explores the degree of pollution of organochlorine pesticides in fish and water in the dam at Kpassa on a tributary of Okpara River that is pumped by Benin National Water agency (SONEB) in supplying drinking water to supply the city of Parakou. Doing so, fourteen parameters of organochlorine are analyzed. Most of obtain organoclorine concentration in water and fish below is indicated critical values. However, DDT and endrine concentration in water is slightly above legal tolerable values. Hexachlorobenen and dieldrine concentrations are three times higher than legal limit value while aldrine is ten times higher. However, heptachlore is double concentrated in fishery while aldrine (endrine, dieldrine aldrine, lindane, hexachloro-benzene, DDT) is found in the dam fish and surface water three times concentrated than tolerated value. These levels of concentrations result from the intensification of organoclorine pesticide used in agriculture especially in cotton production. These are caused by the chemical application accumulated in soil and through the food value chain system. Therefore, it is very important to extract sediment from the reservoir by dredging in oder to renew the ecosystem of the dam. To persistently manage the basin water resources, it is imperatively important to observe a significant behaviour changed from all stakeholders.
文摘Garmiyan area suffers from many water problems such as poor rainfall rate, water shortage, aridity and absence of groundwater in many places. Hence the subsurface dam is the best solution due to many advantages such as low cost of construction, least maintenance, low evaporation, no contamination, utilization of the land over the dam and better storage. The objective of this study is to evaluate the suitability of the selected site location for subsurface dam construction, to serve as strategic water supply storage, to solute the aridity and water shortage in this area of arid to semi arid climate in Isayi watershed within the stream deposits. Geographic information systems (GIS) and remote sensing through satellite images and Digital Elevation Model (DEM) interpretation and analysis have facilitated the investigation with more accuracy. ArcGIS helped in construction of thematic maps of the studied area. The geologic, structural, geomorphologic, hydrologic and hydrogeologic characteristics with GPR survey show the suitability of the selected site location for construction of subsurface dam. According to the standard water quality for domestic, irrigation and livestock the water quality of all water samples are within the recommended range and the best time to be chosen, for construction of the subsurface dam, is during the autumn season from September to November.
文摘The study assessed the levels of some toxic metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) with their potential ecological and human health risks in water, African Catfish (Clarias gariepinus), Tilapia (Oreochromis spilurus niger) and sediment samples from the Lower Usuma dam FCT, Nigeria during two major seasons in a year (rainy and dry seasons). Toxic metal concentrations were determined using Atomic Absorption spectrophotometry (Cd, Cr, Cu, Ni, Pb and Zn) and Atomic Emission Spectrophotometry (for As and Hg), and the results obtained were compared with national and international standards. The ecological and human health risk indices of the toxic metals present in the samples from the Dam were evaluated and interpreted. Tilapia from the dam posed the highest but medium ecological and human health risk due to Pb concentration of up to 7.11 mg/kg;ecological risk index of 35.55 and hazard quotient of 50.78. Overall ecological and human health risks were low due to the low concentrations of other toxic metals determined. As, Cd, Cr, Cu, Hg, Ni and Zn concentrations were all below WHO limits in the LUD water;Ni and Pb were above limits in the African Catfish and Tilapia samples. The data obtained were analyzed using one-way analysis of variance (ANOVA) and significant differences accepted at p ≤ 0.05. There was no statistical difference in the concentrations of toxic metals in water but there was significant difference between the concentrations of toxic metals in the fish and sediment samples. Correlation was found to exist between toxic metals in the water, fish and sediment analyzed from the dam. The ecological and human health risks of toxic metals in Lower Usuma dam require regular checks and monitoring hence, it was recommended by the researcher, that this and similar research work be carried out annually by NESREA and also, as research work by other students of Environmental and Analytical chemistry.
文摘The study was undertaken to assess the physicochemical and chemical quality of the Tannur dam water in southern Jordan. The water samples were collected in two intervals the first during May 2015 and the second during September 2015. All samples were analyzed for temperature, conductivity, dissolved oxygen, pH, major cations (Ca2+, Mg2+, K+, Na+), and major anions (Cl-, NO3-, HCO3- and SO42-). The hydrogeochemical analyses of thirty-six water samples were used to determine the properties and type of water in the Tannur dam. The ion concentration in the water samples was from dissolution of carbonate rocks and ion exchange processes in clay. The general chemistry of water samples was typical alkaline earth waters with prevailing bicarbonate chloride. The PHREEQC Hydrogeochemical modeling was used to obtain the saturation indices of specific mineral phases, which might be related to interaction with water and aquifer, and to identify the chemical species of the dissolved ions. Calcite and dolomite solubility were assessed in terms of saturation index where they show positive values indication oversaturated SI > 0. The hydrogeochemistry behavior is rather complicated and is affected by anthropogenic and natural sources. The positive correlation values between various parameters indicate that most of ions result from same lithological sources. The abundance of the major ions in water samples is in the following order: HCO3-> Ca2+ > Cl- > NO3- > SO42-) > Na+ > Mg2+ > K+. Water samples of the Tannur dam are generally very hard, high to very high saline and medium alkaline in nature. High total hardness (TH) and total dissolved solids (TDS) in some samples identify the permissible for domestic and irrigation purposes. According to the residual sodium carbonate, SAR and conductivity values, the studied water is suitable for agricultural purposes.
文摘Composite water samples taken from Owena Multi-purpose Dam in six sampling campaigns covering the wet and dry seasons were analyzed for physico-chemical and microbial characteristics using standard methods for the examination of water and wastewater jointly published by the American Public Health Association, American Water Works Association and Water Pollution Control Federation. Results showed significant (p < 0.05) seasonal variations in most measured parameters with few showing significant spatial variation. The characteristics of the water from the dam lake revealed an acceptable quality for most measured parameters with low chemical pollutants burden when compared with drinking water standards and water quality for aquaculture. However, high values of turbidity, colour, iron, manganese and microbial load were recorded compared with drinking water standards, which call for proper treatment of the water before distribution for public consumption.
文摘This study is an evaluation of the water potential of the Ferlo fossil valley in the Louga area in Senegal. It consisted in determining the volume of water that could be mobilized at the level of a confluence point of the waters according to the flow lines, where a dam would be placed to create a reservoir. This volume of mobilizable water was compared to the average water consumption of the area in order to evaluate its adequacy or not. To do this, a delineation, physical characterization and mapping of the Ferlo watershed was done using Google Earth, Global Mapper and Arc GIS softwares. A catchment area of 28,754 sq·km was obtained with a perimeter of 976 km, an average slope of 0.52% and a hydraulic length of 336 km. Then the decennial runoff of the watershed was calculated using the CIEH method, this flow is estimated at 1120 cm/s. On the basis of this flow, the annual volume of water that can be mobilized was estimated at 11,089,758 cm per year with a solid deposits of 93 cm per year. The conclusions reached are that there is a lack of mobilizable water resources in the area and that the entire fossil valley needs to be rewatered to provide a sustainable alternative water source.
文摘Dams in Jordan are exposed to a variety of natural and manmade threats like dams worldwide, but with some peculiar threats due to Jordan’s semi-arid climate, steep topography, tectonic activity, especially along the Jordan Rift Valley, position in the turbulent Middle East area, and weak socio-economic situation. In this study, the threats facing the main dams in Jordan are discussed and their sources are defined. The responsible agencies for reducing the threats and eliminating their sources are identified, as long as they are manmade. Natural threats are dealt with as superimposed and Jordan has to adapt to them by taking the necessary protective measures. The study concludes that all dams in Jordan are threatened by climate change and siltation and hence reduction in storage. The quality of stored water in dams, which are used for supplying drinking water such as Al-Wehdah, Wadi Al-Arab, Ziglab, Al-Wala and to a certain extent Al-Mujib is threatened by pollution due to urbanization, agricultural and industrial activities. All dams in Jordan are exposed to sabotage threats, which may negatively affect dams’ water quantities and quality. The stability of dams due to engineering failures is observed in the cases of Al-Kafrain, the left abutment of Al-Mujib, the spillway of Wheidi and eventually Al-Wala Dam. The latter was raised based on unique construction technology. The study recommends developing and implementing, as soon as possible, rigorous action plans to eliminate or, minimize the impacts of threats facing dams in Jordan.