期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Cluster analysis of the domain of microseismic event attributes for fl oor water inrush warning in the working face
1
作者 Shang Guo-Jun Liu Xiao-Fei +3 位作者 Li Li Zhao Li-Song Shen Jin-Song Huang Wei-Lin 《Applied Geophysics》 SCIE CSCD 2022年第3期409-423,471,472,共17页
Differences are found in the attributes of microseismic events caused by coal seam rupture,underground structure activation,and groundwater movement in coal mine production.Based on these differences,accurate classific... Differences are found in the attributes of microseismic events caused by coal seam rupture,underground structure activation,and groundwater movement in coal mine production.Based on these differences,accurate classification and analysis of microseismic events are important for the water inrush warning of the coal mine working facefloor.Cluster analysis,which classifies samples according to data similarity,has remarkable advantages in nonlinear classification.A water inrush early warning method for coal minefloors is proposed in this paper.First,the short time average over long time average(STA/LTA)method is used to identify effective events from continuous microseismic records to realize the identification of microseismic events in coal mines.Then,ten attributes of microseismic events are extracted,and cluster analysis is conducted in the attribute domain to realize unsupervised classification of microseismic events.Clustering results of synthetic andfield data demonstrate the effectiveness of the proposed method.The analysis offield data clustering results shows that thefirst kind of events with time change rules is of considerable importance to the early warning of water inrush from the coal mine working facefloor. 展开更多
关键词 signal detection attribute extraction cluster analysis and water disaster warning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部