期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
Water System Condition and Asset Replacement Prioritization
1
作者 Frederick Bloetscher Zachary Farmer +3 位作者 James Barton Teresa Chapman Paula Fonseca Monica Shaner 《Journal of Water Resource and Protection》 CAS 2023年第5期165-178,共14页
The goal of asset management is to identify and track the maintenance and replacement of assets that have reached their useful life. For that reason, gathering data and collecting information is a critical step when d... The goal of asset management is to identify and track the maintenance and replacement of assets that have reached their useful life. For that reason, gathering data and collecting information is a critical step when developing an asset management plan. Such data gathering includes physical and operational properties of the assets as well as collecting and tracking important events during the lifespan of the asset (i.e., pipe breaks, replacement year, maintenance performed, etc.). Critical factors in the asset management plan may be overlooked when there is no data or poor quality data. However, many utilities lack the resources for examining buried infrastructure and lack good quality work order data, so other methods of data collection are needed. The concept for this paper was to develop a means to acquire data on the assets for a condition assessment to identify pipes that were most likely to break and those with the highest consequences for same. Three utilities were used as examples. It was found that for buried infrastructure, much more information was known than anticipated but the actual predictions relied on only a few factors related to pipe type. However, there is a need to track the consequences, in this case breaks, which would indicate a failure. The latter would be useful for predicting future maintenance needs and the most at-risk assets, but is often missing in utility systems as many utilities do not adequately track breaks sufficiently. In this case two utilities were analyzed and predication on a third was developed. 展开更多
关键词 water Main Predicted Failure Asset Management Pipe Failure water Distributions
下载PDF
Review Study on the Accumulation and Release of Trace Metal Elements on Aluminum Containing Sediments in Drinking Water Distribution System 被引量:1
2
作者 Xiaoni ZHANG Jinghua MENG +2 位作者 Li CHEN Huanhuan ZUO Wendong WANG 《Research and Application of Materials Science》 2020年第1期34-38,共5页
Accumulation and releasing of trace metal elements on aluminum containing sediments of inner drinking water pipe is discussed,as studied from five variations effecting:raw water quality,chemical reagents,solution pH a... Accumulation and releasing of trace metal elements on aluminum containing sediments of inner drinking water pipe is discussed,as studied from five variations effecting:raw water quality,chemical reagents,solution pH and drinking water flow condition.In order to decrease the release of trace metal elements,and to ensure the pipe operation and human safety,water quality adjustment is suggested to avoid aluminum containing sediments formation in drinking distribution system.The maximum amounts of accumulation of common trace metal elements are given.Future trends of development in this field are also proposed. 展开更多
关键词 drinking water distribution system aluminum containing sediments trace metal elements ACCUMULATION RELEASE
下载PDF
Research on corrosion mechanism of water distribution system
3
作者 张新瑜 李欣 +2 位作者 覃吴 徐雯雯 袁一星 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第1期121-125,共5页
Pipes serving for water distribution system for different years in northern city,were chosen as objectives for study.The shape and component of corrosion scales were measured,and formation mechanism of corrosion was a... Pipes serving for water distribution system for different years in northern city,were chosen as objectives for study.The shape and component of corrosion scales were measured,and formation mechanism of corrosion was also analyzed.The corrosion mechanism of pipes was studied on the sides of electrochemistry and microbe.The solution to eliminate corrosion scales in water distribution system was also proposed.The results show that the specific surface areas of five corrosion scales are between 41.35 and 132.3 m2/g and the dimension of corrosion scales enlarge with the increase of serving age,which could induce the decrease of water flow cross-section. 展开更多
关键词 CORROSION water distribution system water quality
下载PDF
Hydraulic Reliability Assessment and Optimal Rehabilitation/Upgrading Schedule for Water Distribution Systems
4
作者 Wei Peng Rene V. Mayorga 《Applied Mathematics》 2016年第18期2336-2353,共18页
This paper develops an innovative approach to optimize a long-term rehabilitation and upgrading schedule (RUS) for a water distribution system with considering both hydraulic failure and mechanical performance failure... This paper develops an innovative approach to optimize a long-term rehabilitation and upgrading schedule (RUS) for a water distribution system with considering both hydraulic failure and mechanical performance failure circumstances. The proposed approach assesses hydraulic reliability dynamically and then optimizes the long-term RUS in sequence for a water distribution system. The uncertain hydraulic parameters are treated as random numbers in a stochastic hydraulic reliability assessment. The methodologies used for optimization in a stochastic environment are: Monte Carlo Simulation, EPANET Simulation, Genetic Algorithms, Shamir and Howard’s Exponential Model, Threshold Break Rate Model and Two-Stage Optimization Model. The proposed approach is conducted on a simulation model of water distribution network in a computer by two universal codes, namely the hydraulic reliability code and the optimal RUS code. The applicability of this approach is verified in an example of a benchmark water distribution network. 展开更多
关键词 Optimization Stochastic water Distribution REHABILITATION UPGRADE Hydraulic Re-liability
下载PDF
Investigation of factors affecting rural drinking water consumption using intelligent hybrid models
5
作者 Alireza Mehrabani Bashar Hamed Nozari +2 位作者 Safar Marofi Mohamad Mohamadi Ahad Ahadiiman 《Water Science and Engineering》 EI CAS CSCD 2023年第2期175-183,共9页
Identifying the factors affecting drinking water consumption is essential to the rational management of water resources and effective environment protection. In this study, the effects of the factors on rural drinking... Identifying the factors affecting drinking water consumption is essential to the rational management of water resources and effective environment protection. In this study, the effects of the factors on rural drinking water demand were studied using the adaptive neuro-fuzzy inference system (ANFIS) and hybrid models, such as the ANFIS-genetic algorithm (GA), ANFIS-particle swarm optimization (PSO), and support vector machine (SVM)-simulated annealing (SA). The rural areas of Hamadan Province in Iran were selected for the case study. Five drinking water consumption factors were selected for the assessment according to the literature, data availability, and the characteristics of the study area (such as precipitation, relative humidity, temperature, the number of subscribers, and water price). The results showed that the standard errors of ANFIS, ANFIS-GA, ANFIS-PSO, and SVM-SA were 0.669, 0.619, 0.705, and 0.578, respectively. Therefore, the hybrid model SVM-SA outperformed other models. The sensitivity analysis showed that of the parameters affecting drinking water consumption, the number of subscribers significantly affected the water consumption rate, while the average temperature was the least significant factor. Water price was a factor that could be easily controlled, but it was always one of the least effective parameters due to the low water fee. 展开更多
关键词 ANFIS water distribution network Simulated annealing algorithm Support vector machine Adaptive neuro-fuzzy inference system
下载PDF
Root distribution and influencing factors of dry-sowing and wet-growing cotton plants under different water conditions
6
作者 DING Yu ZHANG Jianghui +4 位作者 BAI Yungang LIU Hongbo ZHENG Ming ZHAO Jinghua XIAO Jun 《排灌机械工程学报》 CSCD 北大核心 2023年第10期1073-1080,共8页
To study the effect of soil water and salt environment factors on the root growth of cotton under different moisture control,three different emergence water volumes(60,105,and 150 m^(3)/hm^(2)),two different frequenci... To study the effect of soil water and salt environment factors on the root growth of cotton under different moisture control,three different emergence water volumes(60,105,and 150 m^(3)/hm^(2)),two different frequencies(high frequency and low frequency)and one double film cover winter irrigation control treatment(CK:2250 m^(3)/hm^(2))were set up to analyze the spatial distribution patterns of soil water and salt environment and root density in dry sown and wet emerged cotton fields under diffe-rent moisture control conditions.The results show that the soil water content and water infiltration range gradually become larger with the increase of seedling water quantity,and the larger the seedling water quantity,the higher the soil water content.With the same seedling water quantity,the soil water content of the high-frequency(HF)treatment becomes obviously larger.The soil conductivity of each treatment tends to decrease gradually with the increase of seedling water and drip frequency,among which the distribution of soil conductivity of S6 treatment is closest to that of CK.With the increase in soil depth,the soil conductivity tends to increase first and then decrease.Compared with the low-frequency(LF)treatment,the high-frequency treatment shows a significantly deeper soil salt accumulation layer.The root length density(RLD)of cotton gradually increases with the amount of seedling water and the frequency of dripping.The soil layer of root distribution gradually deepens with the amount of seedling water in the vertical direction,and the RLD value in the horizontal direction is significantly greater in the mulched area than that in the bare area between films.This research can serve as a solid scientific foundation for the use of dry sowing and wet emergence techniques in cotton fields in southern Xinjiang. 展开更多
关键词 COTTON double film mulching dry sowing and wet germination moisture regulation water and salt distribution root distribution cotton double film mulching dry sowing and wet germination moisture regulation water and salt distribution root distribution
下载PDF
Use of two-stage dough mixing process in improving water distribution of dough and qualities of bread made from wheat–potato flour 被引量:4
7
作者 YIN Jian CHENG Li +4 位作者 HONG Yan LI Zhao-feng LI Cai-ming BAN Xiao-feng GU Zheng-biao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第1期300-310,共11页
The two-stage dough mixing process was innovated to improve the qualities of bread made from potato flour(PF) and wheat flour at a ratio of 1:1(w/w). The final dough was first prepared from wheat flour before being ad... The two-stage dough mixing process was innovated to improve the qualities of bread made from potato flour(PF) and wheat flour at a ratio of 1:1(w/w). The final dough was first prepared from wheat flour before being added with PF. The effects of the method on enhancing the dough qualities were verified, and the distribution of water in gluten-gelatinized starch matrix of the doughs was investigated. We observed that the bread qualities were improved, as reflected by the increase of specific volume from 2.26 to 2.96 m L g^–1 and the decrease of crumb hardness from 417.93 to 255.57 g. The results from rheofermentometric measurements showed that the dough mixed using the developed mixing method had higher maximum dough height value, time of dough porosity appearance, and gas retention coefficient, as well as enhanced gluten matrix formation compared to that mixed by the traditional mixing method. The results from low-field nuclear magnetic resonance confirmed that the competitive water absorption between gluten and gelatinized starch could restrict the formation of gluten network in the dough mixed using the traditional mixing process. Using the novel mixing method, gluten could be sufficiently hydrated in stage 1, which could then weaken the competitive water absorption caused by gelatinized starch in stage 2;this could also be indicated by the greater mobility of proton in PF and better development of gluten network during mixing. 展开更多
关键词 gelatinized starch gluten network potato flour water distribution two-stage dough mixing process
下载PDF
Partitioning of Water Distribution Network into District Metered Areas Using Existing Valves 被引量:1
8
作者 Aniket N.Sharma Shilpa R.Dongre +2 位作者 Rajesh Gupta Prerna Pandey Neeraj Dhanraj Bokde 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第6期1515-1537,共23页
Water distribution network(WDN)leakage management has received increased attention in recent years.One of the most successful leakage-control strategies is to divide the network into District Metered Areas(DMAs).As a ... Water distribution network(WDN)leakage management has received increased attention in recent years.One of the most successful leakage-control strategies is to divide the network into District Metered Areas(DMAs).As a multi-staged technique,the generation of DMAs is a difficult task in design and implementation(i.e.,clustering,sectorization,and performance evaluation).Previous studies on DMAs implementation did not consider the potential use of existing valves in achieving the objective.In this work,a methodology is proposed for detecting clusters and reducing the cost of additional valves and DMA sectorization by considering existing valves as much as possible.The procedure of DMAs identification has been divided into three stages,i.e.,a)clusters identification;b)sectorization or boundaries optimization and c)performance evaluation of the partitioned network.The proposed methodology is evaluated on a simple network and a real-world water network with the findings provided and compared to the DMAs,established for a raw water network with no existing valves.It is found that there is an adequate difference in cost of strategy implementation in both the cases for the network under consideration and the existing valve system achieved better network performance in terms of resilience index. 展开更多
关键词 Clusters identification district metered areas existing valves sectorization water distribution networks
下载PDF
A three dimensional visualized physical simulation for natural gas charging in the micro-nano pore system 被引量:1
9
作者 QIAO Juncheng ZENG Jianhui +7 位作者 XIA Yuxuan CAI Jianchao CHEN Dongxia JIANG Shu HAN Guomeng CAO Zhe FENG Xiao FENG Sen- 《Petroleum Exploration and Development》 CSCD 2022年第2期349-362,共14页
A micro-nano pore three-dimensional visualized real-time physical simulation of natural gas charging, in-situ pore-scale computation, pore network modelling, and apparent permeability evaluation theory were used to in... A micro-nano pore three-dimensional visualized real-time physical simulation of natural gas charging, in-situ pore-scale computation, pore network modelling, and apparent permeability evaluation theory were used to investigate laws of gas and water flow and their distribution, and controlling factors during the gas charging process in low-permeability(tight) sandstone reservoir. By describing features of gas-water flow and distribution and their variations in the micro-nano pore system, it is found that the gas charging in the low permeability(tight) sandstone can be divided into two stages, expansion stage and stable stage. In the expansion stage, the gas flows continuously first into large-sized pores then small-sized pores, and first into centers of the pores then edges of pores;pore-throats greater than 20 μm in radius make up the major pathway for gas charging. With the increase of charging pressure, movable water in the edges of large-sized pores and in the centers of small pores is displaced out successively. Pore-throats of 20-50 μm in radius and pore-throats less than 20 μm in radius dominate the expansion of gas charging channels at different stages of charging in turn, leading to reductions in pore-throat radius, throat length and coordination number of the pathway, which is the main increase stage of gas permeability and gas saturation. Among which, pore-throats 30-50 μm in radius control the increase pattern of gas saturation. In the stable stage, gas charging pathways have expanded to the maximum, so the pathways keep stable in pore-throat radius, throat length, and coordination number, and irreducible water remains in the pore system, the gas phase is in concentrated clusters, while the water phase is in the form of dispersed thin film, and the gas saturation and gas permeability tend stable. Connected pore-throats less than 20 μm in radius control the expansion limit of the charging pathways, the formation of stable gas-water distribution, and the maximum gas saturation. The heterogeneity of connected pore-throats affects the dynamic variations of gas phase charging and gas-water distribution. It can be concluded that the pore-throat configuration and heterogeneity of the micro-nanometer pore system control the dynamic variations of the low-permeability(tight) sandstone gas charging process and gas-water distribution features. 展开更多
关键词 low permeability(tight)sandstone gas charging three-dimensional visualization physical simulation micro-nanometer pore network gas and water flow and distribution
下载PDF
Partial dehydration of brucite and its implications for water distribution in the subducting oceanic slab
10
作者 Xinzhuan Guo Takashi Yoshino +2 位作者 Sibo Chen Xiang Wu Junfeng Zhang 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第2期275-283,共9页
Hydrous minerals within the subducting oceanic slab are important hosts for water.Clarification of the stability field of hydrous minerals helps to understand transport and distribution of water from the surface to th... Hydrous minerals within the subducting oceanic slab are important hosts for water.Clarification of the stability field of hydrous minerals helps to understand transport and distribution of water from the surface to the Earth’s interior.We investigated the stability of brucite,a prototype of hydrous minerals,by means of electrical conductivity measurements in both open and closed systems at 3 GPa and temperatures up to 1300 K.Dramatic increase of conductivity in association with characteristic impedance spectra suggests that partial dehydration of single-crystal brucite in the open system with a low water fugacity occurs at 950 K,which is about 300 K lower than those previously defined by phase equilibrium experiments in the closed system.By contrast,brucite completely dehydrates at 1300 K in the closed system,consistent with previous studies.Partial dehydration may generate a highly defective structure but does not lead to the breakdown of brucite to periclase and water immediately.Water activity plays a key role in the stability of hydrous minerals.Low water activity(a H_(2)O)caused by the high wetting behavior of the subducted oceanic slab at the transition zone depth may cause the partial dehydration of the dense hydrous magnesium silicates(DHMSs),which significantly reduces the temperature stability of DHMS(this mechanism has been confirmed by previous study on super hydrous phase B).As a result,the transition zone may serve as a‘dead zone’for DHMSs,and most water will be stored in wadsleyite and ringwoodite in the transition zone. 展开更多
关键词 Partial dehydration Electrical conductivity BRUCITE Oceanic slab water distribution Hydrous minerals
下载PDF
Calculation of the Water Distribution Networks Based on the Theory of Slow Transient Flow
11
作者 Hui-Zhe Cao Zhi-Gang Zhou +2 位作者 He-Ping Tan Long Guo Fei-Fei Luo 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第1期49-54,共6页
Urban water supply network is a modern urban survival and development of the infrastructure of a city,and its normal running conditions have important significance. The actual hydraulic process in the variableload wat... Urban water supply network is a modern urban survival and development of the infrastructure of a city,and its normal running conditions have important significance. The actual hydraulic process in the variableload water distribution networks can be treated as the slow transient flow which belongs to the unsteady flow. This paper analyzes the multi-loops network slow transient model based on graph theory,and the link flow matrix is treated as the variables of the discrete solution model to simulate the process of the slow transient flow in the network. With the simulation of hydraulic regime in an actual pipe network,the changing laws of the flow in the pipes,nodal hydraulic heads and other hydraulic factors with the passage of time are obtained. Since the transient processes offer much more information than a steady process,the slow transient theory is not only practical on analyzing the hydraulic condition of the network,but also on identifying hydraulic resistance coefficients of pipes and detecting the leakage in networks. 展开更多
关键词 component: graph theory water distribution network slow transient flow inertial hydraulic head
下载PDF
Application of River Network Hydrodynamic Model in Determining Water Distribution Scale of Haishu Plain
12
作者 Meijun Huang Sufu Chu Degang Jin 《Journal of Water Resource and Protection》 2022年第4期334-348,共15页
The water distribution network is an important part of the plain water environment improvement system. To make efficient use of the regional water diversion source, scientifically distribute the water diversion flow a... The water distribution network is an important part of the plain water environment improvement system. To make efficient use of the regional water diversion source, scientifically distribute the water diversion flow and improve the water environment carrying capacity of Haishu Plain, the river network hydrodynamic model is used in this paper to simulate the water intake location, reasonable water quantity and influence range of water transfer in Haishu Plain. The simulation results have high accuracy, which can provide a scientific basis for the scale, water transfer mechanism and project layout of water transfer construction in Haishu Plain and show a strong reference value for the study of water diversion and distribution scheme of coastal plain river network. 展开更多
关键词 River Network Hydrodynamic Model water Distribution Planning water Diversion and Drainage Layout water Environment Haishu Plain
下载PDF
Numerical method for wave height distribution within the artificial harbor with water depth of steep variation
13
《Acta Oceanologica Sinica》 SCIE CAS CSCD 1998年第3期417-421,共5页
NumericalmethodforwaveheightdistributionwithintheartificialharborwithwaterdepthofsteepvariationINTRODUCTIONA... NumericalmethodforwaveheightdistributionwithintheartificialharborwithwaterdepthofsteepvariationINTRODUCTIONAnartificialharbor... 展开更多
关键词 WAVE Numerical method for wave height distribution within the artificial harbor with water depth of steep variation
下载PDF
Distribution of Marine Cladocerans in the Coastal Waters of Southern China
14
作者 K.W.Tang Q.C.Chen C.K.Wong 《中山大学学报论丛》 1995年第3期198-200,共3页
关键词 Distribution of Marine Cladocerans in the Coastal waters of Southern China
下载PDF
Seasonal variations of microbial community and antibiotic resistome in a suburb drinking water distribution system in a northern Chinese city 被引量:1
15
作者 Yanchu Ke Wenjun Sun +2 位作者 Zibo Jing Zhinan Zhao Shuguang Xie 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第5期714-725,共12页
Antibiotic resistance genes(ARGs)are an emerging issue for drinkingwater safety.However,the seasonal variation of ARGs in drinking water distribution systems(DWDS)is still unclear.This work revealed the tempo-spatial ... Antibiotic resistance genes(ARGs)are an emerging issue for drinkingwater safety.However,the seasonal variation of ARGs in drinking water distribution systems(DWDS)is still unclear.This work revealed the tempo-spatial changes of microbial community,ARGs,mobile genetic elements(MGEs)co-occurring with ARGs,ARG hosts in DWDS bulk water by means of metagenome assembly.The microbial community and antibiotic resistome varied with sampling season and site.Temperature,ammonia,chlorite and total plate count(TPC)drove the variations of microbial community structure.Moreover,environmental parameters(total organic carbon(TOC),chlorite,TPC and hardness)shifted antibiotic resistome.ARGs and MGEs co-occurring with ARGs showed higher relative abundance in summer and autumn,which might be attributed to detached pipe biofilm.In particular,ARG-bacitracin and plasmid were the predominant ARG and MGE,respectively.ARG hosts changed with season and site and were more diverse in summer and autumn.In winter and spring,Limnohabitans and Mycobacterium were the major ARG hosts as well as the dominant genera in microbial community.In addition,in summer and autumn,high relative abundance of Achromobacter and Stenotrophomonas were the hosts harboring many kinds of ARGs and MGEs at site in a residential zone(0.4 km from the water treatment plant).Compared with MGEs,microbial community had a greater contribution to the variation of antibiotic resistome.This work gives new insights into the dynamics of ARGs in full-scale DWDS and the underlying factors. 展开更多
关键词 Drinking water distribution system Seasonal change Microbial community Antibiotic resistance genes Mobile genetic elements
原文传递
Molecular ecological networks reveal the spatial-temporal variation of microbial communities in drinking water distribution systems
16
作者 Zibo Jing Zedong Lu +5 位作者 Zhinan Zhao Wenfeng Cao Weibo Wang Yanchu Ke Xiaohui Wang Wenjun Sun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第2期176-186,共11页
Microbial activity and regrowth in drinking water distribution systems is a major concern for water service companies.However,previous studies have focused on the microbial composition and diversity of the drinkingwat... Microbial activity and regrowth in drinking water distribution systems is a major concern for water service companies.However,previous studies have focused on the microbial composition and diversity of the drinkingwater distribution systems(DWDSs),with little discussion on microbial molecular ecological networks(MENs)in different water supply networks.MEN analysis explores the potentialmicrobial interaction and the impact of environmental stress,to explain the characteristics of microbial community structures.In this study,the random matrix theory-based network analysis was employed to investigate the impact of seasonal variation including water source switching on the networks of three DWDSs that used different disinfection methods.The results showed that microbial interaction varied slightly with the seasons but was significantly influenced by different DWDSs.Proteobacteria,identified as key species,play an important role in the network.Combined UV-chlorine disinfection can effectively reduce the size and complexity of the network compared to chlorine disinfection alone,ignoring seasonal variations,which may affect microbial activity or control microbial regrowth in DWDSs.This study provides new insights for analyzing the dynamics of microbial interactions in DWDSs. 展开更多
关键词 Drinking water distribution system Molecular ecological network water source switch UV-chlorine combined disinfection
原文传递
Generative adversarial networks for detecting contamination events in water distribution systems using multi-parameter,multi-site water quality monitoring
17
作者 Zilin Li Haixing Liu +1 位作者 Chi Zhang Guangtao Fu 《Environmental Science and Ecotechnology》 SCIE 2023年第2期39-52,共14页
Contamination events in water distribution networks(WDNs)can have a huge impact on water supply and public health;increasingly,online water quality sensors are deployed for real-time detection of contamination events.... Contamination events in water distribution networks(WDNs)can have a huge impact on water supply and public health;increasingly,online water quality sensors are deployed for real-time detection of contamination events.Machine learning has been used to integrate multivariate time series water quality data at multiple stations for contamination detection;however,accurate extraction of spatial features in water quality signals remains challenging.This study proposed a contamination detection method based on generative adversarial networks(GANs).The GAN model was constructed to simultaneously consider the spatial correlation between sensor locations and temporal information of water quality indicators.The model consists of two networksda generator and a discriminatordthe outputs of which are used to measure the degree of abnormality of water quality data at each time step,referred to as the anomaly score.Bayesian sequential analysis is used to update the likelihood of event occurrence based on the anomaly scores.Alarms are then generated from the fusion of single-site and multi-site models.The proposed method was tested on a WDN for various contamination events with different characteristics.Results showed high detection performance by the proposed GAN method compared with the minimum volume ellipsoid benchmark method for various contamination amplitudes.Additionally,the GAN method achieved high accuracy for various contamination events with different amplitudes and numbers of anomalous water quality parameters,and water quality data from different sensor stations,highlighting its robustness and potential for practical application to real-time contamination events. 展开更多
关键词 Contamination detection Generative adversarial network Multi-site time series data water distribution system water quality
原文传递
Straw layer burial to alleviate salt stress in silty loam soils: Impacts of straw forms 被引量:7
18
作者 ZHANG Hong-yuan LU Chuang +3 位作者 PANG Huan-cheng LIU Na ZHANG Xiao-li LI Yu-yi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第1期265-276,共12页
Salt stress can be alleviated by straw layer burial in the soil, but little is known of the appropriate form of the straw layer for optimal regulation of soil water and salinity because of the uncontrollability of fie... Salt stress can be alleviated by straw layer burial in the soil, but little is known of the appropriate form of the straw layer for optimal regulation of soil water and salinity because of the uncontrollability of field tests. Here, the following four straw forms with compaction thickness of 5 cm buried 40–45 deep were studied: no straw layer(CK), segmented straw(SL, 5 cm in length), straw pellet(SK), and straw powder(SF). The three straw forms(SL, SK and SF) significantly delayed the infiltration of irrigation water down the column profile by 71.20–134.3 h relative to CK and the migration velocity of the wetting front under SF was the slowest. It took longer for the wetting front to transcend SK than SL but shorter for it to reach the bottom of soil column after water crossed the straw layer. Compared with CK, the average volumetric water content in the 0–40 cm soil layer increased by 6.45% under SL, 1.77% under SK and 5.39% under SF. The desalination rates at the 0–40 and 0–100 cm soil layers increased by 5.85 and 3.76% under SL, 6.64 and 1.47% under SK and 5.97 and 4.82% under SF. However, there was no significant difference among straw forms in the 0–40 cm soil layer. Furthermore, the salt leaching efficiency(SLE, g mm^–1 h^–1) above the 40 cm layer under SL was 0.0097, being significantly higher than that under SF(0.0071) by 37.23%. Salt storage under SL, SK and SF in the 40–45 cm layer accounted for 4.50, 16.92 and 7.43% of total storage in the 1-m column profile. Cumulative evaporation under SL and SF decreased significantly by 41.20 and 49.00%, with both treatments having the most significant inhibition of salt accumulation(resalinization rate being 36.06 and 47.15% lower than CK) in the 0–40 cm soil layer. In conclusion, the different forms of straw layers have desalting effects under high irrigation level(446 mm). In particular, SL and SF performed better than SK in promoting deep salt leaching and inhibiting salt accumulation on the soil surface. However, SL was simpler to implement and its SLE was higher. Therefore, the segmented 5 cm straw can be recommended as an optimum physical form for establishing a straw layer for managing saline soils for crop production. 展开更多
关键词 straw layer segmented straw with 5 cm length straw pellet straw powder infiltration evaporation water and salt distribution
下载PDF
Effect of wheat bran insoluble dietary fiber with different particle size on the texture properties, protein secondary structure, and microstructure of noodles 被引量:20
19
作者 Jian Zhang Mengqin Li +1 位作者 Chaoran Li Yanqi Liu 《Grain & Oil Science and Technology》 2019年第4期97-102,共6页
This study was conducted to explore how the insoluble dietary fiber(IDF)of wheat bran with different particle size affects the texture properties,water distribution,protein secondary structure and microstructure of no... This study was conducted to explore how the insoluble dietary fiber(IDF)of wheat bran with different particle size affects the texture properties,water distribution,protein secondary structure and microstructure of noodles.The results suggested that IDF addition increased the cooking loss and decreased the sensory evaluation because of the damage on dough structure,while as the IDF particle size decreased,the sensory score increased from 78.8 to 82.3 and cooking loss decreased from 8.65%to 7.65%,which could be attributed to that small particle-sized IDF limited the damage on protein network structure,decreased the T22 and t-structure,and increased the β1-structure.Moreover,IDF particle size had a significant correlation with protein secondary structures,texture properties and evaluation score of noodles.In conclusion,adding appropriate particle sizewould be an effectiveway of enhancing the nutritional and textural properties of noodles. 展开更多
关键词 Wheat bran Insoluble dietary fiber water distribution MICROSTRUCTURE Noodle quality
下载PDF
Review on corrosion and corrosion scale formation upon unlined cast iron pipes in drinking water distribution systems 被引量:2
20
作者 Haiya Zhang Dibo Liu +6 位作者 Lvtong Zhao Jun Wang Shuguang Xie Shuming Liu Pengfei Lin Xiaojian Zhang Chao Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第7期173-189,共17页
The qualified finished water from water treatment plants(WTPs) may become discolored and deteriorated during transportation in drinking water distribution systems(DWDSs), which affected tap water quality seriously. Th... The qualified finished water from water treatment plants(WTPs) may become discolored and deteriorated during transportation in drinking water distribution systems(DWDSs), which affected tap water quality seriously. This water stability problem often occurs due to pipe corrosion and the destabilization of corrosion scales. This paper provides a comprehensive review of pipe corrosion in DWDSs, including corrosion process, corrosion scale formation, influencing factors and monitoring technologies utilized in DWDSs. In terms of corrosion process, corrosion occurrence, development mechanisms, currently applied assays, and indices used to determine the corrosion possibility are summarized, as well as the chemical and bacterial influences. In terms of scale formation, explanations for the nature of corrosion and scale formation mechanisms are discussed and its typical multilayered structure is illustrated. Furthermore, the influences of water quality and microbial activity on scale transformation are comprehensively discussed. Corrosion-related bacteria at the genus level and their associated corrosion mechanism are also summarized. This review helps deepen the current understanding of pipe corrosion and scale formation in DWDSs, providing guidance for water supply utilities to ensure effective measures to maintain water quality stability and guarantee drinking water safety. 展开更多
关键词 CORROSION Scale formation water quality stability Drinking water distribution system Iron pipe water supply safety
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部