Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems.However,substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality.This stud...Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems.However,substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality.This study monitored the microstructural features and composition of sediments and microbial community structures in bulk water in eight multimaterial Chinese networks.Chloride concentration analysis demonstrated that separate cleaning of pipes with different materials in complex networks could mitigate the risk of losing ice pigs and degrading water quality.The microstructural and trace element characterization results showed that ice pigs would scarcely disturb the inner surfaces of long-used pipes.The bacterial richness and diversity of bulk water decreased significantly after ice pigging.Furthermore,correlations were established between pipe service age,temperature,and chloride and total iron concentrations,and the 15 most abundant taxa in bulk water,which could be used to guide practical ice pigging operations.展开更多
Water quality within water distribution system may vary with both location and time. Water quality models are used to predict the spatial and temporal variation of water quality throughout water system. A model of res...Water quality within water distribution system may vary with both location and time. Water quality models are used to predict the spatial and temporal variation of water quality throughout water system. A model of residual chlorine decay in water pipe has been developed, given the consumption of chlorine in reactions with chemicals in bulk water, bio films on pipe wall, in corrosion process, and the mass transport of chlorine from bulk water to pipe wall. Analytical methods of the flow path from water sources to the observed point and the water age of every observed node were proposed. Model is used to predict the decay of residual chlorine in an actual distribution system. Good agreement between calculated and measured values was obtained.展开更多
As one of the most important urban lifeline systems,a water distribution system can be damaged under a strong earthquake,and the damage cannot easily be located,especially immediately after the event.This often causes...As one of the most important urban lifeline systems,a water distribution system can be damaged under a strong earthquake,and the damage cannot easily be located,especially immediately after the event.This often causes tremendous difficulties to post-earthquake emergency response and recovery activities.This paper proposes a methodology to locate seismic damage to a water distribution system by monitoring water head online at some nodes in the water distribution system.An artificial neural network-based inverse analysis method is developed to estimate the water head variations at all nodes that are not monitored based on the water head variations at the nodes that are monitored.The methodology provides a quick,effective,and practical way to locate seismic damage to a water distribution system.展开更多
A field study on the estimation and analysis of iron stability in drinking water distribution system was carried out in a city of China. The stability of iron ion was estimated by pC-pH figure. It was found that iron ...A field study on the estimation and analysis of iron stability in drinking water distribution system was carried out in a city of China. The stability of iron ion was estimated by pC-pH figure. It was found that iron ion was unstable, with a high Fe (OH)3 precipitation tendency and obvious increase in turbidity. The outer layer of the corrosion scale was compact, while the inner core was porous. The main composition of the scale was iron, and the possible compound constitutes of the outer scale were α-FeOH, γ-FeOOH, α-Fe2O3, γ-F2O3, FeCl3, while the inner were Fe3O4, FeCl2, FeCO3. According to the characteristics of the corrosion scale, it was thought that the main reason for iron instability was iron release from corrosion scale. Many factors such as pipe materials, dissolved oxygen and chlorine residual affect iron release. Generally, higher iron release occurred with lower dissolved oxygen or chlorine residual concentration, while lower iron release occurred with higher dissolved oxygen or chlorine residual concentration. The reason was considered that the passivated out layer of scale of ferric oxide was broken down by reductive reaction in a condition of low oxidants concentration, which would result more rapid corrosion of the nine and red water phenomenon.展开更多
In order to evaluate the seismic reliability of water distribution system and make rehabilitation decisions correspondingly, it is necessary to assess pipelines damage states and conduct functional analysis based on p...In order to evaluate the seismic reliability of water distribution system and make rehabilitation decisions correspondingly, it is necessary to assess pipelines damage states and conduct functional analysis based on pipe leakage model. When an earthquake occurred, the water distribution system kept serving with leakage. By adding a virtual node at the centre of the pipeline with leakage, an efficient approach to pressure-driven analysis was developed for simulating a variety of low relative scenarios, and a hydraulic leakage model was also built to perform hydraulic analysis of the water supply network with seismic damage. Then the mean-first-order-second-moment method was used to analyse the seismic serviceability of the water distribution system. According to the assessment analysis, pipes that were destroyed or in heavy leakage were isolated and repaired emergently, which improved the water supply capability of the network and would constitute the basis for enhancing seismic reliability of the system. The proposed approach to seismic reliability and rehabilitation decision analysis on water distribution system is demonstrated effective through a case study.展开更多
A leak detection method based on Bayesian theory and Fisher’s law was developed for water distribution systems. A hydraulic model was associated with the parameters of leaks (location, extent). The randomness of para...A leak detection method based on Bayesian theory and Fisher’s law was developed for water distribution systems. A hydraulic model was associated with the parameters of leaks (location, extent). The randomness of parameter values was quantified by probability density function and updated by Bayesian theory. Values of the parameters were estimated based on Fisher’s law. The amount of leaks was estimated by back propagation neural network. Based on flow characteristics in water distribution systems, the location of leaks can be estimated. The effectiveness of the proposed method was illustrated by simulated leak data of node pressure head and flow rate of pipelines in a test pipe network, and the leaks were spotted accurately and renovated on time.展开更多
The water distribution system of one residential district in Tianjin is taken as an example to analyze the changes of water quality.Partial least squares(PLS) regression model,in which the turbidity and Fe are regarde...The water distribution system of one residential district in Tianjin is taken as an example to analyze the changes of water quality.Partial least squares(PLS) regression model,in which the turbidity and Fe are regarded as control objectives,is used to establish the statistical model.The experimental results indicate that the PLS regression model has good predicted results of water quality compared with the monitored data.The percentages of absolute relative error(below 15%,20%,30%) are 44.4%,66.7%,100%(turbidity) and 33.3%,44.4%,77.8%(Fe) on the 4th sampling point;77.8%,88.9%,88.9%(turbidity) and 44.4%,55.6%,66.7%(Fe) on the 5th sampling point.展开更多
The variation of water quality in water distribution system was investigated with assimilable organic carbon (AOC)and trihalomethanes(THMs) used as assessment indexes. Bacterium was identified in water distribution. T...The variation of water quality in water distribution system was investigated with assimilable organic carbon (AOC)and trihalomethanes(THMs) used as assessment indexes. Bacterium was identified in water distribution. The result showed that there were pathogenic parasites in water distribution system. The variation of AOC is related to chlorine residual and bacterium activity, and AOC concentration decreased first and then increased with the extension of water distribution system. The formation of THMs was related to the consumption of chlorine inside the distribution system, and THMs concentration increased with the extension of water pipe line.展开更多
Water leaving the treatment works is usually of a high quality but its properties change during the transportation stage. Increasing awareness of the quality of the service provided within the water industry today and...Water leaving the treatment works is usually of a high quality but its properties change during the transportation stage. Increasing awareness of the quality of the service provided within the water industry today and assessing the reliability of the water quality in a distribution system has become a major significance for decision on system operation based on water quality in distribution networks. Using together a water age model, a chlorine decay model and a model of acceptable maximum water age can assess the reliability of the water quality in a distribution system. First, the nodal water age values in a certain complex distribution system can be calculated by the water age model. Then, the acceptable maximum water age value in the distribution system is obtained based on the chlorine decay model. The nodes at which the water age values are below the maximum value are regarded as reliable nodes. Finally, the reliability index on the percentile weighted by the nodal demands reflects the reliability of the water quality in the distribution system. The approach has been applied in a real water distribution network. The contour plot based on the water age values determines a surface of the reliability of the water quality. At any time, this surface is used to locate high water age but poor reliability areas, which identify parts of the network that may be of poor water quality. As a result, the contour water age provides a valuable aid for a straight insight into the water quality in the distribution system.展开更多
A combined first and second-order model, which includes bulk decay and wall decay, was developed to describe chlorine decay in water distribution systems. In the model the bulk decay has complex relationships with tot...A combined first and second-order model, which includes bulk decay and wall decay, was developed to describe chlorine decay in water distribution systems. In the model the bulk decay has complex relationships with total organic carbon (TOC), the initial chlorine concentration and the temperature. Except for the initial stages they can be simplified into a linear increase with TOC, a linear decrease with initial chlorine concentration and an exponential relationship with the temperature. The model also explains why chlorine decays rapidly in the initial stages. The parameters of model are determined by deriving the best fitness with experimental data. And the accuracy of model has been verified by using the experimental data and the monitoring data in a distribution system.展开更多
This study aimed to investigate bacterial community in an urban drinking water distribution system (DWDS) during an occurrence of colored water. Variation in the bacterial community diversity and structure was obser...This study aimed to investigate bacterial community in an urban drinking water distribution system (DWDS) during an occurrence of colored water. Variation in the bacterial community diversity and structure was observed among the different waters, with the predominance of Proteobacteria. While Verrucomicrobia was also a major phylum group in colored water. Limnobacter was the major genus group in colored water, but Undibacterium predominated in normal tap water. The coexistence of Limnobacter as well as Sediminibacterium and Aquobocterium might contribute to the formation of colored water.展开更多
Accumulation and releasing of trace metal elements on aluminum containing sediments of inner drinking water pipe is discussed,as studied from five variations effecting:raw water quality,chemical reagents,solution pH a...Accumulation and releasing of trace metal elements on aluminum containing sediments of inner drinking water pipe is discussed,as studied from five variations effecting:raw water quality,chemical reagents,solution pH and drinking water flow condition.In order to decrease the release of trace metal elements,and to ensure the pipe operation and human safety,water quality adjustment is suggested to avoid aluminum containing sediments formation in drinking distribution system.The maximum amounts of accumulation of common trace metal elements are given.Future trends of development in this field are also proposed.展开更多
A specialised electrochemical measurement cell was plugged into a pilot water distribution system to simulate the pipe inner-wall corrosion. The linear polarisation resistance(LPR) technique and electrochemical impeda...A specialised electrochemical measurement cell was plugged into a pilot water distribution system to simulate the pipe inner-wall corrosion. The linear polarisation resistance(LPR) technique and electrochemical impedance spectroscopy(EIS) were measured in real time to study the variation of the corrosion rate(CR) and scale of cast iron. Three corrosion stages were observed according to the LPR analysis: an initial stage with significantly fluctuating CR, a developmental stage with slowly decreasing CR, and a stable stage with a low CR of approximately 0.157 5 mm·a^(-1). The EIS revealed that the scales with a compact outer layer and a porous inner layer finally formed in the stable stage, and the polarisation resistance was approximately 2 175 ?·cm^2. A physicochemical analysis of the scales showed that ferric oxides, oxyhydroxides and calcite made the outer layer compact and effectively limited the diffusion of oxygen through the scales, which resulted in a low CR.展开更多
This paper focuses on the quantitative expression of bacterial regrowth in water distribution system. Considering public health risks of bacterial regrowth,the experiment was performed on a distribution system of sele...This paper focuses on the quantitative expression of bacterial regrowth in water distribution system. Considering public health risks of bacterial regrowth,the experiment was performed on a distribution system of selected area.Physical,chemical,and microbiological parameters such as turbidity,temperature,residual chlorine and pH were measured over a three-month period and correlation analysis was carried out.Combined with principal components analysis(PCA) ,a logistic regression model is developed to predict and diagnose bacterial regrowth and locate the zones with high risks of microbiology in the distribution system.The model gives the probability of bacterial regrowth with the number of heterotrophic plate counts as the binary response variable and three new principal components variables as the explanatory variables.The veracity of the logistic regression model was 90%,which meets the precision requirement of the model.展开更多
Pipes serving for water distribution system for different years in northern city,were chosen as objectives for study.The shape and component of corrosion scales were measured,and formation mechanism of corrosion was a...Pipes serving for water distribution system for different years in northern city,were chosen as objectives for study.The shape and component of corrosion scales were measured,and formation mechanism of corrosion was also analyzed.The corrosion mechanism of pipes was studied on the sides of electrochemistry and microbe.The solution to eliminate corrosion scales in water distribution system was also proposed.The results show that the specific surface areas of five corrosion scales are between 41.35 and 132.3 m2/g and the dimension of corrosion scales enlarge with the increase of serving age,which could induce the decrease of water flow cross-section.展开更多
To investigate the characteristics of disinfection by-products (DBPs) in an actual water distribution system using the raw water with high bromide ion concentration, the composition and concentration of trihalometha...To investigate the characteristics of disinfection by-products (DBPs) in an actual water distribution system using the raw water with high bromide ion concentration, the composition and concentration of trihalomethanes (THMs) formed by chlorination of the water in the presence of bromide ion were measured in a city water distribution system during one year. The results show that brominated THMs contributed a great part (83%-89% ) to the index for additive toxicity (ATI) and resulted in the ATI of most of the samples exceeding WHO guideline standard for total THMs ( TTHMs), especially during the summer ( rainy season). This indicates that the chlorination of water in the presence of bromide ion leaded to high ratios of brominated THMs to TrHMs. However, a visible increase in the concentration of THMs with increasing residence time in the distribution system was not observed. Additionally, based on alternatives analysis, packed tower aeration method is proposed to reduce THMs level of the finished water leaving the treatment plant.展开更多
After the declaration of the first case of Legionnaire's disease in Cameroon in 2007, the Centre Pasteur of Cameroon implemented the detection method for Legionella. The introduction of this new method was put in pla...After the declaration of the first case of Legionnaire's disease in Cameroon in 2007, the Centre Pasteur of Cameroon implemented the detection method for Legionella. The introduction of this new method was put in places in order to investigate Legionella spp. colonization of water distribution systems (WDS) of large buildings including hospitals, hotels and Off Shore Exploitations Sites (OSES) in an attempt to identify risk factors for Legionella spp. Water systems of 6 hotels, 6 hospitals and 6 ships were investigated for the presence of Legionella spp.. A total of 130 samples were collected, 77 from hotels, 27 from hospitals and 26 from ships. 51 Legionella spp. were isolated from 41 (31.54%) water samples. Of a total of 51 positive isolates, 40/51 (78.4%) were L. pneumophila with 21 (52.5%) Legionellapneumophila serogroup (sg) 1, 16 (40%) L. pneumophila sg 5, 2 (5%) L. pneumophila sg 6, 1 (2.5%) L. pneumophila sg 7 and 11/51 Legionella spp. with 10 (90%) L. anisa, 1 (10%) Legionella dumoffii. 5 L. pneumophila sg 1 were associated with 5 L. pneumophila sg 5 and 4 L. pneumophila sg 1 were associated with 4 L. anisa. These results showed that WDS of hospitals, hotels and ships can be heavily colonized by Legionella spp. and may present a risk of Legionnaires' disease. Based on these preliminary results, we have just put in place a Legionella survey protocol in Cameroon.展开更多
This paper develops an innovative approach to optimize a long-term rehabilitation and upgrading schedule (RUS) for a water distribution system with considering both hydraulic failure and mechanical performance failure...This paper develops an innovative approach to optimize a long-term rehabilitation and upgrading schedule (RUS) for a water distribution system with considering both hydraulic failure and mechanical performance failure circumstances. The proposed approach assesses hydraulic reliability dynamically and then optimizes the long-term RUS in sequence for a water distribution system. The uncertain hydraulic parameters are treated as random numbers in a stochastic hydraulic reliability assessment. The methodologies used for optimization in a stochastic environment are: Monte Carlo Simulation, EPANET Simulation, Genetic Algorithms, Shamir and Howard’s Exponential Model, Threshold Break Rate Model and Two-Stage Optimization Model. The proposed approach is conducted on a simulation model of water distribution network in a computer by two universal codes, namely the hydraulic reliability code and the optimal RUS code. The applicability of this approach is verified in an example of a benchmark water distribution network.展开更多
Antibiotic resistance genes(ARGs)are an emerging issue for drinkingwater safety.However,the seasonal variation of ARGs in drinking water distribution systems(DWDS)is still unclear.This work revealed the tempo-spatial ...Antibiotic resistance genes(ARGs)are an emerging issue for drinkingwater safety.However,the seasonal variation of ARGs in drinking water distribution systems(DWDS)is still unclear.This work revealed the tempo-spatial changes of microbial community,ARGs,mobile genetic elements(MGEs)co-occurring with ARGs,ARG hosts in DWDS bulk water by means of metagenome assembly.The microbial community and antibiotic resistome varied with sampling season and site.Temperature,ammonia,chlorite and total plate count(TPC)drove the variations of microbial community structure.Moreover,environmental parameters(total organic carbon(TOC),chlorite,TPC and hardness)shifted antibiotic resistome.ARGs and MGEs co-occurring with ARGs showed higher relative abundance in summer and autumn,which might be attributed to detached pipe biofilm.In particular,ARG-bacitracin and plasmid were the predominant ARG and MGE,respectively.ARG hosts changed with season and site and were more diverse in summer and autumn.In winter and spring,Limnohabitans and Mycobacterium were the major ARG hosts as well as the dominant genera in microbial community.In addition,in summer and autumn,high relative abundance of Achromobacter and Stenotrophomonas were the hosts harboring many kinds of ARGs and MGEs at site in a residential zone(0.4 km from the water treatment plant).Compared with MGEs,microbial community had a greater contribution to the variation of antibiotic resistome.This work gives new insights into the dynamics of ARGs in full-scale DWDS and the underlying factors.展开更多
Contamination events in water distribution networks(WDNs)can have a huge impact on water supply and public health;increasingly,online water quality sensors are deployed for real-time detection of contamination events....Contamination events in water distribution networks(WDNs)can have a huge impact on water supply and public health;increasingly,online water quality sensors are deployed for real-time detection of contamination events.Machine learning has been used to integrate multivariate time series water quality data at multiple stations for contamination detection;however,accurate extraction of spatial features in water quality signals remains challenging.This study proposed a contamination detection method based on generative adversarial networks(GANs).The GAN model was constructed to simultaneously consider the spatial correlation between sensor locations and temporal information of water quality indicators.The model consists of two networksda generator and a discriminatordthe outputs of which are used to measure the degree of abnormality of water quality data at each time step,referred to as the anomaly score.Bayesian sequential analysis is used to update the likelihood of event occurrence based on the anomaly scores.Alarms are then generated from the fusion of single-site and multi-site models.The proposed method was tested on a WDN for various contamination events with different characteristics.Results showed high detection performance by the proposed GAN method compared with the minimum volume ellipsoid benchmark method for various contamination amplitudes.Additionally,the GAN method achieved high accuracy for various contamination events with different amplitudes and numbers of anomalous water quality parameters,and water quality data from different sensor stations,highlighting its robustness and potential for practical application to real-time contamination events.展开更多
基金financially supported by the National Natural Science Foundation of China(52100015)the Zhejiang Provincial Natural Science Foundation of China(LQ22E080018)the China Postdoctoral Science Foundation(2021M692860).
文摘Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems.However,substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality.This study monitored the microstructural features and composition of sediments and microbial community structures in bulk water in eight multimaterial Chinese networks.Chloride concentration analysis demonstrated that separate cleaning of pipes with different materials in complex networks could mitigate the risk of losing ice pigs and degrading water quality.The microstructural and trace element characterization results showed that ice pigs would scarcely disturb the inner surfaces of long-used pipes.The bacterial richness and diversity of bulk water decreased significantly after ice pigging.Furthermore,correlations were established between pipe service age,temperature,and chloride and total iron concentrations,and the 15 most abundant taxa in bulk water,which could be used to guide practical ice pigging operations.
基金TheNationalNaturalScienceFoundationofChina (No .5 96 780 18)
文摘Water quality within water distribution system may vary with both location and time. Water quality models are used to predict the spatial and temporal variation of water quality throughout water system. A model of residual chlorine decay in water pipe has been developed, given the consumption of chlorine in reactions with chemicals in bulk water, bio films on pipe wall, in corrosion process, and the mass transport of chlorine from bulk water to pipe wall. Analytical methods of the flow path from water sources to the observed point and the water age of every observed node were proposed. Model is used to predict the decay of residual chlorine in an actual distribution system. Good agreement between calculated and measured values was obtained.
基金National Natural Science Foundation of China under Grant No.59878032
文摘As one of the most important urban lifeline systems,a water distribution system can be damaged under a strong earthquake,and the damage cannot easily be located,especially immediately after the event.This often causes tremendous difficulties to post-earthquake emergency response and recovery activities.This paper proposes a methodology to locate seismic damage to a water distribution system by monitoring water head online at some nodes in the water distribution system.An artificial neural network-based inverse analysis method is developed to estimate the water head variations at all nodes that are not monitored based on the water head variations at the nodes that are monitored.The methodology provides a quick,effective,and practical way to locate seismic damage to a water distribution system.
文摘A field study on the estimation and analysis of iron stability in drinking water distribution system was carried out in a city of China. The stability of iron ion was estimated by pC-pH figure. It was found that iron ion was unstable, with a high Fe (OH)3 precipitation tendency and obvious increase in turbidity. The outer layer of the corrosion scale was compact, while the inner core was porous. The main composition of the scale was iron, and the possible compound constitutes of the outer scale were α-FeOH, γ-FeOOH, α-Fe2O3, γ-F2O3, FeCl3, while the inner were Fe3O4, FeCl2, FeCO3. According to the characteristics of the corrosion scale, it was thought that the main reason for iron instability was iron release from corrosion scale. Many factors such as pipe materials, dissolved oxygen and chlorine residual affect iron release. Generally, higher iron release occurred with lower dissolved oxygen or chlorine residual concentration, while lower iron release occurred with higher dissolved oxygen or chlorine residual concentration. The reason was considered that the passivated out layer of scale of ferric oxide was broken down by reductive reaction in a condition of low oxidants concentration, which would result more rapid corrosion of the nine and red water phenomenon.
基金Supported by National Natural Science Foundation of China(No.50478094)
文摘In order to evaluate the seismic reliability of water distribution system and make rehabilitation decisions correspondingly, it is necessary to assess pipelines damage states and conduct functional analysis based on pipe leakage model. When an earthquake occurred, the water distribution system kept serving with leakage. By adding a virtual node at the centre of the pipeline with leakage, an efficient approach to pressure-driven analysis was developed for simulating a variety of low relative scenarios, and a hydraulic leakage model was also built to perform hydraulic analysis of the water supply network with seismic damage. Then the mean-first-order-second-moment method was used to analyse the seismic serviceability of the water distribution system. According to the assessment analysis, pipes that were destroyed or in heavy leakage were isolated and repaired emergently, which improved the water supply capability of the network and would constitute the basis for enhancing seismic reliability of the system. The proposed approach to seismic reliability and rehabilitation decision analysis on water distribution system is demonstrated effective through a case study.
基金Supported by National Natural Science Foundation of China (No. 50278062 and 50578108)Science and Technology Innovation Funds Project of Tianjin, China (No. 08FDZDSF03200)
文摘A leak detection method based on Bayesian theory and Fisher’s law was developed for water distribution systems. A hydraulic model was associated with the parameters of leaks (location, extent). The randomness of parameter values was quantified by probability density function and updated by Bayesian theory. Values of the parameters were estimated based on Fisher’s law. The amount of leaks was estimated by back propagation neural network. Based on flow characteristics in water distribution systems, the location of leaks can be estimated. The effectiveness of the proposed method was illustrated by simulated leak data of node pressure head and flow rate of pipelines in a test pipe network, and the leaks were spotted accurately and renovated on time.
基金Supported by National Natural Science Foundation of China (No.50478086)Tianjin Special Scientific Innovation Foundation (No.06FZZDSH00900)
文摘The water distribution system of one residential district in Tianjin is taken as an example to analyze the changes of water quality.Partial least squares(PLS) regression model,in which the turbidity and Fe are regarded as control objectives,is used to establish the statistical model.The experimental results indicate that the PLS regression model has good predicted results of water quality compared with the monitored data.The percentages of absolute relative error(below 15%,20%,30%) are 44.4%,66.7%,100%(turbidity) and 33.3%,44.4%,77.8%(Fe) on the 4th sampling point;77.8%,88.9%,88.9%(turbidity) and 44.4%,55.6%,66.7%(Fe) on the 5th sampling point.
文摘The variation of water quality in water distribution system was investigated with assimilable organic carbon (AOC)and trihalomethanes(THMs) used as assessment indexes. Bacterium was identified in water distribution. The result showed that there were pathogenic parasites in water distribution system. The variation of AOC is related to chlorine residual and bacterium activity, and AOC concentration decreased first and then increased with the extension of water distribution system. The formation of THMs was related to the consumption of chlorine inside the distribution system, and THMs concentration increased with the extension of water pipe line.
文摘Water leaving the treatment works is usually of a high quality but its properties change during the transportation stage. Increasing awareness of the quality of the service provided within the water industry today and assessing the reliability of the water quality in a distribution system has become a major significance for decision on system operation based on water quality in distribution networks. Using together a water age model, a chlorine decay model and a model of acceptable maximum water age can assess the reliability of the water quality in a distribution system. First, the nodal water age values in a certain complex distribution system can be calculated by the water age model. Then, the acceptable maximum water age value in the distribution system is obtained based on the chlorine decay model. The nodes at which the water age values are below the maximum value are regarded as reliable nodes. Finally, the reliability index on the percentile weighted by the nodal demands reflects the reliability of the water quality in the distribution system. The approach has been applied in a real water distribution network. The contour plot based on the water age values determines a surface of the reliability of the water quality. At any time, this surface is used to locate high water age but poor reliability areas, which identify parts of the network that may be of poor water quality. As a result, the contour water age provides a valuable aid for a straight insight into the water quality in the distribution system.
基金Sponsored by Fok Ying Tung Education Foundation (No. 94004)
文摘A combined first and second-order model, which includes bulk decay and wall decay, was developed to describe chlorine decay in water distribution systems. In the model the bulk decay has complex relationships with total organic carbon (TOC), the initial chlorine concentration and the temperature. Except for the initial stages they can be simplified into a linear increase with TOC, a linear decrease with initial chlorine concentration and an exponential relationship with the temperature. The model also explains why chlorine decays rapidly in the initial stages. The parameters of model are determined by deriving the best fitness with experimental data. And the accuracy of model has been verified by using the experimental data and the monitoring data in a distribution system.
基金financially supported by State Environmental Protection Key Laboratory of Microorganism Application and Risk Control(No.MARC2012D010)National Water Special Program(No.2012ZX07404-002)International Science&Technology Cooperation Program of China(No.2010DFA91830)
文摘This study aimed to investigate bacterial community in an urban drinking water distribution system (DWDS) during an occurrence of colored water. Variation in the bacterial community diversity and structure was observed among the different waters, with the predominance of Proteobacteria. While Verrucomicrobia was also a major phylum group in colored water. Limnobacter was the major genus group in colored water, but Undibacterium predominated in normal tap water. The coexistence of Limnobacter as well as Sediminibacterium and Aquobocterium might contribute to the formation of colored water.
基金This work was supported by City Collage of Science and Technology.Chongqing University and Chongqing HaiRun institute of energy saving research。
文摘Accumulation and releasing of trace metal elements on aluminum containing sediments of inner drinking water pipe is discussed,as studied from five variations effecting:raw water quality,chemical reagents,solution pH and drinking water flow condition.In order to decrease the release of trace metal elements,and to ensure the pipe operation and human safety,water quality adjustment is suggested to avoid aluminum containing sediments formation in drinking distribution system.The maximum amounts of accumulation of common trace metal elements are given.Future trends of development in this field are also proposed.
基金Supported by the National Natural Science Foundation of China(No.51278333)Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20130032110032)
文摘A specialised electrochemical measurement cell was plugged into a pilot water distribution system to simulate the pipe inner-wall corrosion. The linear polarisation resistance(LPR) technique and electrochemical impedance spectroscopy(EIS) were measured in real time to study the variation of the corrosion rate(CR) and scale of cast iron. Three corrosion stages were observed according to the LPR analysis: an initial stage with significantly fluctuating CR, a developmental stage with slowly decreasing CR, and a stable stage with a low CR of approximately 0.157 5 mm·a^(-1). The EIS revealed that the scales with a compact outer layer and a porous inner layer finally formed in the stable stage, and the polarisation resistance was approximately 2 175 ?·cm^2. A physicochemical analysis of the scales showed that ferric oxides, oxyhydroxides and calcite made the outer layer compact and effectively limited the diffusion of oxygen through the scales, which resulted in a low CR.
基金Supported by National Natural Science Foundation of China(No.50878140)Project of Water Pollution Control and Repair(No.2008ZX07317-005)
文摘This paper focuses on the quantitative expression of bacterial regrowth in water distribution system. Considering public health risks of bacterial regrowth,the experiment was performed on a distribution system of selected area.Physical,chemical,and microbiological parameters such as turbidity,temperature,residual chlorine and pH were measured over a three-month period and correlation analysis was carried out.Combined with principal components analysis(PCA) ,a logistic regression model is developed to predict and diagnose bacterial regrowth and locate the zones with high risks of microbiology in the distribution system.The model gives the probability of bacterial regrowth with the number of heterotrophic plate counts as the binary response variable and three new principal components variables as the explanatory variables.The veracity of the logistic regression model was 90%,which meets the precision requirement of the model.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2007AA06Z303)the Science Foundation of Harbin(Grant No.2007RFXXS022)+1 种基金Samdong Province High School Science&Technology Foundation Planning Project(Grant No.J10LE10)the Foundation of Jinan University(Grant No.XBS1014)
文摘Pipes serving for water distribution system for different years in northern city,were chosen as objectives for study.The shape and component of corrosion scales were measured,and formation mechanism of corrosion was also analyzed.The corrosion mechanism of pipes was studied on the sides of electrochemistry and microbe.The solution to eliminate corrosion scales in water distribution system was also proposed.The results show that the specific surface areas of five corrosion scales are between 41.35 and 132.3 m2/g and the dimension of corrosion scales enlarge with the increase of serving age,which could induce the decrease of water flow cross-section.
基金National High-Tech Research and Development Program of China ( 863 Program ) ( No.2007AA06Z303)
文摘To investigate the characteristics of disinfection by-products (DBPs) in an actual water distribution system using the raw water with high bromide ion concentration, the composition and concentration of trihalomethanes (THMs) formed by chlorination of the water in the presence of bromide ion were measured in a city water distribution system during one year. The results show that brominated THMs contributed a great part (83%-89% ) to the index for additive toxicity (ATI) and resulted in the ATI of most of the samples exceeding WHO guideline standard for total THMs ( TTHMs), especially during the summer ( rainy season). This indicates that the chlorination of water in the presence of bromide ion leaded to high ratios of brominated THMs to TrHMs. However, a visible increase in the concentration of THMs with increasing residence time in the distribution system was not observed. Additionally, based on alternatives analysis, packed tower aeration method is proposed to reduce THMs level of the finished water leaving the treatment plant.
文摘After the declaration of the first case of Legionnaire's disease in Cameroon in 2007, the Centre Pasteur of Cameroon implemented the detection method for Legionella. The introduction of this new method was put in places in order to investigate Legionella spp. colonization of water distribution systems (WDS) of large buildings including hospitals, hotels and Off Shore Exploitations Sites (OSES) in an attempt to identify risk factors for Legionella spp. Water systems of 6 hotels, 6 hospitals and 6 ships were investigated for the presence of Legionella spp.. A total of 130 samples were collected, 77 from hotels, 27 from hospitals and 26 from ships. 51 Legionella spp. were isolated from 41 (31.54%) water samples. Of a total of 51 positive isolates, 40/51 (78.4%) were L. pneumophila with 21 (52.5%) Legionellapneumophila serogroup (sg) 1, 16 (40%) L. pneumophila sg 5, 2 (5%) L. pneumophila sg 6, 1 (2.5%) L. pneumophila sg 7 and 11/51 Legionella spp. with 10 (90%) L. anisa, 1 (10%) Legionella dumoffii. 5 L. pneumophila sg 1 were associated with 5 L. pneumophila sg 5 and 4 L. pneumophila sg 1 were associated with 4 L. anisa. These results showed that WDS of hospitals, hotels and ships can be heavily colonized by Legionella spp. and may present a risk of Legionnaires' disease. Based on these preliminary results, we have just put in place a Legionella survey protocol in Cameroon.
文摘This paper develops an innovative approach to optimize a long-term rehabilitation and upgrading schedule (RUS) for a water distribution system with considering both hydraulic failure and mechanical performance failure circumstances. The proposed approach assesses hydraulic reliability dynamically and then optimizes the long-term RUS in sequence for a water distribution system. The uncertain hydraulic parameters are treated as random numbers in a stochastic hydraulic reliability assessment. The methodologies used for optimization in a stochastic environment are: Monte Carlo Simulation, EPANET Simulation, Genetic Algorithms, Shamir and Howard’s Exponential Model, Threshold Break Rate Model and Two-Stage Optimization Model. The proposed approach is conducted on a simulation model of water distribution network in a computer by two universal codes, namely the hydraulic reliability code and the optimal RUS code. The applicability of this approach is verified in an example of a benchmark water distribution network.
基金supported by the National Key R&D Program of China(No.2019YFC0408700).
文摘Antibiotic resistance genes(ARGs)are an emerging issue for drinkingwater safety.However,the seasonal variation of ARGs in drinking water distribution systems(DWDS)is still unclear.This work revealed the tempo-spatial changes of microbial community,ARGs,mobile genetic elements(MGEs)co-occurring with ARGs,ARG hosts in DWDS bulk water by means of metagenome assembly.The microbial community and antibiotic resistome varied with sampling season and site.Temperature,ammonia,chlorite and total plate count(TPC)drove the variations of microbial community structure.Moreover,environmental parameters(total organic carbon(TOC),chlorite,TPC and hardness)shifted antibiotic resistome.ARGs and MGEs co-occurring with ARGs showed higher relative abundance in summer and autumn,which might be attributed to detached pipe biofilm.In particular,ARG-bacitracin and plasmid were the predominant ARG and MGE,respectively.ARG hosts changed with season and site and were more diverse in summer and autumn.In winter and spring,Limnohabitans and Mycobacterium were the major ARG hosts as well as the dominant genera in microbial community.In addition,in summer and autumn,high relative abundance of Achromobacter and Stenotrophomonas were the hosts harboring many kinds of ARGs and MGEs at site in a residential zone(0.4 km from the water treatment plant).Compared with MGEs,microbial community had a greater contribution to the variation of antibiotic resistome.This work gives new insights into the dynamics of ARGs in full-scale DWDS and the underlying factors.
基金supported by the National Natural Science Foundation of China(52122901,52079016)Fundamental Research Funds for the Central Universities(DUT21GJ203+1 种基金the UK Royal Society(Ref:IF160108 and IEC\NSFC\170249)sponsored by the China Scholarship Council(202106060094).
文摘Contamination events in water distribution networks(WDNs)can have a huge impact on water supply and public health;increasingly,online water quality sensors are deployed for real-time detection of contamination events.Machine learning has been used to integrate multivariate time series water quality data at multiple stations for contamination detection;however,accurate extraction of spatial features in water quality signals remains challenging.This study proposed a contamination detection method based on generative adversarial networks(GANs).The GAN model was constructed to simultaneously consider the spatial correlation between sensor locations and temporal information of water quality indicators.The model consists of two networksda generator and a discriminatordthe outputs of which are used to measure the degree of abnormality of water quality data at each time step,referred to as the anomaly score.Bayesian sequential analysis is used to update the likelihood of event occurrence based on the anomaly scores.Alarms are then generated from the fusion of single-site and multi-site models.The proposed method was tested on a WDN for various contamination events with different characteristics.Results showed high detection performance by the proposed GAN method compared with the minimum volume ellipsoid benchmark method for various contamination amplitudes.Additionally,the GAN method achieved high accuracy for various contamination events with different amplitudes and numbers of anomalous water quality parameters,and water quality data from different sensor stations,highlighting its robustness and potential for practical application to real-time contamination events.