In order to improve the source water quality of drinking water and mitigate the load of drinking water treatment plant, a pilot test was conducted with integrated horizontal flow constructed wetlands to pretreat the w...In order to improve the source water quality of drinking water and mitigate the load of drinking water treatment plant, a pilot test was conducted with integrated horizontal flow constructed wetlands to pretreat the water supply in the reservoirs of Yellow River. Resuhs show that under the hydraulic loading rate of 4 m^3/( m^2 · d), the average removal rates of chemical oxygen demand (COD), total nitrogen (TN), ammonium nitrogen ( NH4 ^+ - N), nitrate nitrogen ( NO3 ^- - N), nitrite - nitrogen ( NO2^ - - N) and total phosphorus (TP) in the horizontal flow constructed wetlands are 49. 68% , 53.01%, 48.48%, 53.61% , 62. 57% and 49. 56%, re- spectively. The study on purifying mechanism of the constructed wetlands indicates that the disposal of contamination by subsurface wetlands is the combined actions of physical chemistry, plants and microorganism.展开更多
Reservoir construction and operation profoundly alter the hydrological,hydrodynamic,and carbon and nitrogen cycling processes of rivers.However,current research still lacks a systematic understanding of the characteri...Reservoir construction and operation profoundly alter the hydrological,hydrodynamic,and carbon and nitrogen cycling processes of rivers.However,current research still lacks a systematic understanding of the characteristics of greenhouse gas(GHG)emissions from reservoirs in arid/semi-arid regions.This study integrates existing monitoring data to discuss the characteristics of GHG emissions from reservoirs in the Yellow River Basin and illustrate the controlling factors and underlying mechanism of these processes.The results indicate that while CO_(2) emission flux from reservoirs is lower than that from river channels,the emission fluxes of CH_(4) and N_(2)O are 1.9 times and 10 times those from rivers,respectively,indicating that the emission of GHG with stronger radiative effect is significantly enhanced in reservoirs.Compared to the reservoirs in humid climates(e.g.,the Three Gorges Reservoir),reservoirs in the Yellow River Basin exhibit relatively lower emissions of CO_(2) and CH_4 due to lower organic matter concentrations,but significantly higher N_(2)O emissions due to higher nitrogen loads.Monte Carlo simulations for 237 reservoirs in the Yellow River Basin showed that total emission of the three GHGs is 3.05 Tg CO_(2)-eq yr^(-1),accounting for 0.39% of the total emission from global reservoirs and lower than the area percentage of the basin(0.53%).This study has important implications on revealing the GHG emission characteristics and control mechanisms of reservoirs in arid/semi-arid regions.展开更多
The Xiaolangdi Reservoir has entered the later sediment-retaining period, and new sediment transport phenomena and channel re-estab- lishing behaviors are appearing. A physical model test was used to forecast the scou...The Xiaolangdi Reservoir has entered the later sediment-retaining period, and new sediment transport phenomena and channel re-estab- lishing behaviors are appearing. A physical model test was used to forecast the scouring and silting trends of the lower Yellow River. Based on water and sediment data from the lower Yellow River during the period from 1960 to 2012, and using a statistical method, this paper analyzed the sediment transport in sediment-laden flows with different discharges and sediment concentrations in the lower Yellow River. The results show that rational water-sediment regulation is necessary to avoid silting in the later sediment-retaining period. The combination of 3 000 m^3/s 〈 Q 〈 4 000 m^3/s and 20 kg/m^3 〈 S 〈 60 kg/m^3 (where Q is the discharge and S is the sediment concentration) at the Huayuankou section is considered an optimal combination for equilibrium sediment transport in the lower Yellow River over a long period of time.展开更多
Based on the measured discharge,sediment load,and cross-sectional data from 1986 to 2015 for the lower Yellow River,changes in the morphological parameters(width,depth,and cross-sectional geomorphic coefficient)of the...Based on the measured discharge,sediment load,and cross-sectional data from 1986 to 2015 for the lower Yellow River,changes in the morphological parameters(width,depth,and cross-sectional geomorphic coefficient)of the main channel are analyzed in this paper.The results show that before the operation of the Xiaolangdi Reservoir(XLDR)from 1986 to 1999,the main channel shrunk continually,with decreasing width and depth.The rate of reduction in its width decreased along the river whereas that of depth increased in the downstream direction.Because the rate of decrease in the width of the main channel was greater than that in channel depth,the cross-sectional geomorphic coefficient decreased in the sub-reach above Gaocun.By contrast,for the sub-reach below Gaocun,the rate of decrease in channel width was smaller than that in channel depth,and the cross-sectional geomorphic coefficient increased.Once the XLDR had begun operation,the main channel eroded continually,and both its width and depth increased from 2000 to 2015.The rate of increase in channel width decreased in the longitudinal direction,and the depth of the main channel in all sub-reaches increased by more than 2 m.Because the rate of increase in the depth of the main channel was clearly larger than that of its width,the cross-sectional geomorphic coefficient decreased in all sub-reaches.The cross-sectional geometry of the main-channel of the lower Yellow River exhibited different adjustment patterns before and after the XLDR began operation.Before its operation,the main channel mainly narrowed in the transverse direction and silted in the vertical direction in the sub-reach above Aishan;in the sub-reach below Aishan,it primarily silted in the vertical direction.After the XLDR began operation,the main channel adjusted by widening in the transverse direction and deepening in the vertical direction in the sub-reach above Aishan;in the sub-reach below it,the main channel adjusted mainly by deepening in the vertical direction.Compared with the rates of decrease in the width and depth of the main channel during the siltation period,the rate of increase in channel width during the scouring period was clearly smaller while the rate of increase in channel depth was larger.After continual siltation and scouring from 1986 to 2015,the cross-sectional geometry of the main-channel changed from wide and shallow to relatively narrow and deep.The pattern of adjustment in the main channel was closely related to the water and sediment conditions.For the braided reach,the cross-sectional geomorphic coefficient was negatively correlated with discharge and positively correlated with suspended sediment concentration(SSC)during the siltation period.By contrast,the cross-sectional geomorphic coefficient was positively correlated with discharge and negatively correlated with SSC during the scouring period.For the transitional and meandering reaches,the cross-sectional geomorphic coefficient was negatively correlated with discharge and positively correlated with SSC.展开更多
This note analyzes the change in water renewal time characteristics based on res- ervoir action and then establishes calculation models for the water renewal time in the Yellow River mainstream. The results indicate t...This note analyzes the change in water renewal time characteristics based on res- ervoir action and then establishes calculation models for the water renewal time in the Yellow River mainstream. The results indicate that the amount of renewable water with reservoir action can meet the annual water demand and that water flows naturally at the Lijin station near estuary. Initial storage dynamics is an important factor in water resource renewable capacity at a certain time, and rational reservoir action can promote sustainable water re- source utilization. When the initial storages in the Longyang Gorge reservoir are 9,343 and 5.343 billion m3, the water renewal times are 28 and 33.9 d, respectively. Flow stoppage appears in April and May.展开更多
With global surge in reservoir construction over the past decades,river systems worldwide have been profoundly fragmented.Consequently,flow manipulation by reservoirs has altered the natural hydrological processes,res...With global surge in reservoir construction over the past decades,river systems worldwide have been profoundly fragmented.Consequently,flow manipulation by reservoirs has altered the natural hydrological processes,resulting in extensive modifications of fluvial-marine ecosystems.Mitigating the adverse ecological consequences of reservoirs has become a global concern and has garnered increasing attention.The Yellow River,as one of the most extensively manipulated river systems globally,has experienced substantial changes in the amount and timing of water discharge due to the presence of numerous reservoirs scattered throughout its catchment area.These alterations have caused physicochemical changes in the estuary and subsequent modifications to the estuarine ecosystem.In recent years,the Yellow River Conservancy Committee initiated the release of water through the Xiaolangdi Dam during the major spawning period of fisheries,specifically in the spring,with the aim of improving the estuarine ecological environment.From 2011 to 2020,a total of 84.05 km^(3)of water was discharged from the Xiaolangdi Reservoir during spring seasons,of which 40%(33.16 km^(3))constituted water impounded within the reservoir during preceding months.Correspondingly,the spring water discharge from the Yellow River to the sea increased significantly from 1.50 km^(3)/yr to 3.46 km^(3)/yr in the past decade,leading to a decrease in estuarine salinity by 1.6 PSU.The estuarine fishery resources,such as fish eggs in the Yellow River estuary,have demonstrated evident improvement.The reservoir regulation in the Yellow River,which has successfully enhanced spring water discharge and subsequently restored estuarine fishery resources,presents an effective attempt for mitigating the adverse ecological effects associated with reservoirs.展开更多
Taking reservoir water diverting from Yellow River as raw water, and using 5 m^3/h of pilot device, the impacts of different bromide concentrations and advanced oxidation ways on bmmate generation in effluent of ozone...Taking reservoir water diverting from Yellow River as raw water, and using 5 m^3/h of pilot device, the impacts of different bromide concentrations and advanced oxidation ways on bmmate generation in effluent of ozone -upward flow BAC -sand filtration technology. Results showed that when bromine ion of raw water was about 100 μg/L, and ozone dosage was 2 mg/L, bromate exceeding risk existed in the effluent of ozone - upward flow BAC technology, and bromate content in the effluent reached 10 μg/L. Moreover, generation amount of bromate had certain linear rela- tionship with bromine ion of influent. Both dosing hydrogen peroxide and potassium permanganate could effectively inhibit bromate production, and there was no bromate generation in final effluent of the technology. Moreover, it also could improve the removal of major pollutants in the water by the combined process. Compared with advanced oxidation of hydrogen peroxide, potassium permanganate pre-oxidation could better control production costs.展开更多
基金Sponsored by the National High Technology Research and Development Program (863) of China (Grant No.2006AA06Z303)the National Natural Sci-ence Foundation of China(Grant No.40671004)the Program for Young Academic Backbone of Harbin Normal University(Grant No.KGB200821)
文摘In order to improve the source water quality of drinking water and mitigate the load of drinking water treatment plant, a pilot test was conducted with integrated horizontal flow constructed wetlands to pretreat the water supply in the reservoirs of Yellow River. Resuhs show that under the hydraulic loading rate of 4 m^3/( m^2 · d), the average removal rates of chemical oxygen demand (COD), total nitrogen (TN), ammonium nitrogen ( NH4 ^+ - N), nitrate nitrogen ( NO3 ^- - N), nitrite - nitrogen ( NO2^ - - N) and total phosphorus (TP) in the horizontal flow constructed wetlands are 49. 68% , 53.01%, 48.48%, 53.61% , 62. 57% and 49. 56%, re- spectively. The study on purifying mechanism of the constructed wetlands indicates that the disposal of contamination by subsurface wetlands is the combined actions of physical chemistry, plants and microorganism.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFC3200401)the National Natural Science Foundation of China(Grant Nos.52379057&52039001)。
文摘Reservoir construction and operation profoundly alter the hydrological,hydrodynamic,and carbon and nitrogen cycling processes of rivers.However,current research still lacks a systematic understanding of the characteristics of greenhouse gas(GHG)emissions from reservoirs in arid/semi-arid regions.This study integrates existing monitoring data to discuss the characteristics of GHG emissions from reservoirs in the Yellow River Basin and illustrate the controlling factors and underlying mechanism of these processes.The results indicate that while CO_(2) emission flux from reservoirs is lower than that from river channels,the emission fluxes of CH_(4) and N_(2)O are 1.9 times and 10 times those from rivers,respectively,indicating that the emission of GHG with stronger radiative effect is significantly enhanced in reservoirs.Compared to the reservoirs in humid climates(e.g.,the Three Gorges Reservoir),reservoirs in the Yellow River Basin exhibit relatively lower emissions of CO_(2) and CH_4 due to lower organic matter concentrations,but significantly higher N_(2)O emissions due to higher nitrogen loads.Monte Carlo simulations for 237 reservoirs in the Yellow River Basin showed that total emission of the three GHGs is 3.05 Tg CO_(2)-eq yr^(-1),accounting for 0.39% of the total emission from global reservoirs and lower than the area percentage of the basin(0.53%).This study has important implications on revealing the GHG emission characteristics and control mechanisms of reservoirs in arid/semi-arid regions.
基金supported by the National Natural Science Foundation of China(Grants No.51039004 and No.51079055)the High-Level Personnel Research Start-Up Funds of North China University of Water Resources and Electric Power(Grant No.201403)the Science and Technology Research Project of the Education Department of Henan Province(Grant No.14A570001)
文摘The Xiaolangdi Reservoir has entered the later sediment-retaining period, and new sediment transport phenomena and channel re-estab- lishing behaviors are appearing. A physical model test was used to forecast the scouring and silting trends of the lower Yellow River. Based on water and sediment data from the lower Yellow River during the period from 1960 to 2012, and using a statistical method, this paper analyzed the sediment transport in sediment-laden flows with different discharges and sediment concentrations in the lower Yellow River. The results show that rational water-sediment regulation is necessary to avoid silting in the later sediment-retaining period. The combination of 3 000 m^3/s 〈 Q 〈 4 000 m^3/s and 20 kg/m^3 〈 S 〈 60 kg/m^3 (where Q is the discharge and S is the sediment concentration) at the Huayuankou section is considered an optimal combination for equilibrium sediment transport in the lower Yellow River over a long period of time.
基金Key Program of National Natural Science Foundation of China,No.51639005National Key R&D Program of China,No.2017YFC0405202,No.2016YFC0402406。
文摘Based on the measured discharge,sediment load,and cross-sectional data from 1986 to 2015 for the lower Yellow River,changes in the morphological parameters(width,depth,and cross-sectional geomorphic coefficient)of the main channel are analyzed in this paper.The results show that before the operation of the Xiaolangdi Reservoir(XLDR)from 1986 to 1999,the main channel shrunk continually,with decreasing width and depth.The rate of reduction in its width decreased along the river whereas that of depth increased in the downstream direction.Because the rate of decrease in the width of the main channel was greater than that in channel depth,the cross-sectional geomorphic coefficient decreased in the sub-reach above Gaocun.By contrast,for the sub-reach below Gaocun,the rate of decrease in channel width was smaller than that in channel depth,and the cross-sectional geomorphic coefficient increased.Once the XLDR had begun operation,the main channel eroded continually,and both its width and depth increased from 2000 to 2015.The rate of increase in channel width decreased in the longitudinal direction,and the depth of the main channel in all sub-reaches increased by more than 2 m.Because the rate of increase in the depth of the main channel was clearly larger than that of its width,the cross-sectional geomorphic coefficient decreased in all sub-reaches.The cross-sectional geometry of the main-channel of the lower Yellow River exhibited different adjustment patterns before and after the XLDR began operation.Before its operation,the main channel mainly narrowed in the transverse direction and silted in the vertical direction in the sub-reach above Aishan;in the sub-reach below Aishan,it primarily silted in the vertical direction.After the XLDR began operation,the main channel adjusted by widening in the transverse direction and deepening in the vertical direction in the sub-reach above Aishan;in the sub-reach below it,the main channel adjusted mainly by deepening in the vertical direction.Compared with the rates of decrease in the width and depth of the main channel during the siltation period,the rate of increase in channel width during the scouring period was clearly smaller while the rate of increase in channel depth was larger.After continual siltation and scouring from 1986 to 2015,the cross-sectional geometry of the main-channel changed from wide and shallow to relatively narrow and deep.The pattern of adjustment in the main channel was closely related to the water and sediment conditions.For the braided reach,the cross-sectional geomorphic coefficient was negatively correlated with discharge and positively correlated with suspended sediment concentration(SSC)during the siltation period.By contrast,the cross-sectional geomorphic coefficient was positively correlated with discharge and negatively correlated with SSC during the scouring period.For the transitional and meandering reaches,the cross-sectional geomorphic coefficient was negatively correlated with discharge and positively correlated with SSC.
基金National Key Basic Research Development of China (973 Program), No.2011CB40330305
文摘This note analyzes the change in water renewal time characteristics based on res- ervoir action and then establishes calculation models for the water renewal time in the Yellow River mainstream. The results indicate that the amount of renewable water with reservoir action can meet the annual water demand and that water flows naturally at the Lijin station near estuary. Initial storage dynamics is an important factor in water resource renewable capacity at a certain time, and rational reservoir action can promote sustainable water re- source utilization. When the initial storages in the Longyang Gorge reservoir are 9,343 and 5.343 billion m3, the water renewal times are 28 and 33.9 d, respectively. Flow stoppage appears in April and May.
基金funded by the National Natural Science Foundation of China(Grant Nos.42041005,42121005,42176168,42149301&42041006)the Fundamental Research Funds for the Central Universities(Grant No.202241007)+1 种基金the Taishan Scholar Project of Shandong Province(Grant Nos.TS20190913&TSQN202211054)the Youth Innovation Team Program in Colleges and Universities of Shandong Province(Grant No.2022KJ045)。
文摘With global surge in reservoir construction over the past decades,river systems worldwide have been profoundly fragmented.Consequently,flow manipulation by reservoirs has altered the natural hydrological processes,resulting in extensive modifications of fluvial-marine ecosystems.Mitigating the adverse ecological consequences of reservoirs has become a global concern and has garnered increasing attention.The Yellow River,as one of the most extensively manipulated river systems globally,has experienced substantial changes in the amount and timing of water discharge due to the presence of numerous reservoirs scattered throughout its catchment area.These alterations have caused physicochemical changes in the estuary and subsequent modifications to the estuarine ecosystem.In recent years,the Yellow River Conservancy Committee initiated the release of water through the Xiaolangdi Dam during the major spawning period of fisheries,specifically in the spring,with the aim of improving the estuarine ecological environment.From 2011 to 2020,a total of 84.05 km^(3)of water was discharged from the Xiaolangdi Reservoir during spring seasons,of which 40%(33.16 km^(3))constituted water impounded within the reservoir during preceding months.Correspondingly,the spring water discharge from the Yellow River to the sea increased significantly from 1.50 km^(3)/yr to 3.46 km^(3)/yr in the past decade,leading to a decrease in estuarine salinity by 1.6 PSU.The estuarine fishery resources,such as fish eggs in the Yellow River estuary,have demonstrated evident improvement.The reservoir regulation in the Yellow River,which has successfully enhanced spring water discharge and subsequently restored estuarine fishery resources,presents an effective attempt for mitigating the adverse ecological effects associated with reservoirs.
文摘Taking reservoir water diverting from Yellow River as raw water, and using 5 m^3/h of pilot device, the impacts of different bromide concentrations and advanced oxidation ways on bmmate generation in effluent of ozone -upward flow BAC -sand filtration technology. Results showed that when bromine ion of raw water was about 100 μg/L, and ozone dosage was 2 mg/L, bromate exceeding risk existed in the effluent of ozone - upward flow BAC technology, and bromate content in the effluent reached 10 μg/L. Moreover, generation amount of bromate had certain linear rela- tionship with bromine ion of influent. Both dosing hydrogen peroxide and potassium permanganate could effectively inhibit bromate production, and there was no bromate generation in final effluent of the technology. Moreover, it also could improve the removal of major pollutants in the water by the combined process. Compared with advanced oxidation of hydrogen peroxide, potassium permanganate pre-oxidation could better control production costs.