Comparing with the homogeneous slope, the nonhomogeneous slope has more significance in practice. The main purpose of the present study is to provide a preliminary idea that how the nonhomogeneity influences the stabi...Comparing with the homogeneous slope, the nonhomogeneous slope has more significance in practice. The main purpose of the present study is to provide a preliminary idea that how the nonhomogeneity influences the stability of slopes under four different water drawdown regimes. Two typical categories of nonhomogeneity, identified as layered profile and strength increasing with depth profile, are included in the paper, and a nonhomogeneity coefficient is defined to quantify the degree of soil properties nonhomogeneity. With a modified discretization technique, the safety factors of nonhomogeneous slopes are calculated. On this basis, the variation of safety factor with the nonhomogeneity coefficient of friction angle and the water table level are investigated. In the present example, safety factor correlates linearly with friction angle nonhomogeneity coefficient from a whole view and the influences of the water table level on safety factor is basically similar with that in homogeneous condition.展开更多
In this study, rapid drawdown scenarios were analyzed by means of numerical examples as well as modeling of real cases with in situ measurements. The aim of the study was to evaluate different approaches available for...In this study, rapid drawdown scenarios were analyzed by means of numerical examples as well as modeling of real cases with in situ measurements. The aim of the study was to evaluate different approaches available for calculating pore water pressure distributions during and after a drawdown. To do that, a single slope subjected to a drawdown was first analyzed under different calculation alternatives, and numerical results were discussed. Simple methods, such as undrained analysis and pure flow analysis, implicitly assuming a rigid soil skeleton, lead to significant errors in pore water pressure distributions when compared with coupled flow-deformation analysis. A similar analysis was performed for the upstream slope of the Glen Shira Dam, Scotland, and numerical results were compared with field measurements during a controlled drawdown. Field records indicate that classical undrained calculations are conservative but unrealistic. Then, a recent case of a major landslide triggered by a rapid drawdown in a reservoir was interpreted. A key aspect of the case was the correct characterization of permeability of a representative soil profile. This was achieved by combining laboratory test results and a back analysis of pore water pressure time records during a period of reservoir water level fluctuations. The results highlight the difficulty of predicting whether the pore water pressure is overestimated or underestimated when using simplified approaches, and it is concluded that predicting the pore water pressure distribution in a slope after a rapid drawdown requires a coupled flow-deformation analysis in saturated and unsaturated porous media.展开更多
基金Project(51408180)supported by the National Natural Science Foundation of China
文摘Comparing with the homogeneous slope, the nonhomogeneous slope has more significance in practice. The main purpose of the present study is to provide a preliminary idea that how the nonhomogeneity influences the stability of slopes under four different water drawdown regimes. Two typical categories of nonhomogeneity, identified as layered profile and strength increasing with depth profile, are included in the paper, and a nonhomogeneity coefficient is defined to quantify the degree of soil properties nonhomogeneity. With a modified discretization technique, the safety factors of nonhomogeneous slopes are calculated. On this basis, the variation of safety factor with the nonhomogeneity coefficient of friction angle and the water table level are investigated. In the present example, safety factor correlates linearly with friction angle nonhomogeneity coefficient from a whole view and the influences of the water table level on safety factor is basically similar with that in homogeneous condition.
文摘In this study, rapid drawdown scenarios were analyzed by means of numerical examples as well as modeling of real cases with in situ measurements. The aim of the study was to evaluate different approaches available for calculating pore water pressure distributions during and after a drawdown. To do that, a single slope subjected to a drawdown was first analyzed under different calculation alternatives, and numerical results were discussed. Simple methods, such as undrained analysis and pure flow analysis, implicitly assuming a rigid soil skeleton, lead to significant errors in pore water pressure distributions when compared with coupled flow-deformation analysis. A similar analysis was performed for the upstream slope of the Glen Shira Dam, Scotland, and numerical results were compared with field measurements during a controlled drawdown. Field records indicate that classical undrained calculations are conservative but unrealistic. Then, a recent case of a major landslide triggered by a rapid drawdown in a reservoir was interpreted. A key aspect of the case was the correct characterization of permeability of a representative soil profile. This was achieved by combining laboratory test results and a back analysis of pore water pressure time records during a period of reservoir water level fluctuations. The results highlight the difficulty of predicting whether the pore water pressure is overestimated or underestimated when using simplified approaches, and it is concluded that predicting the pore water pressure distribution in a slope after a rapid drawdown requires a coupled flow-deformation analysis in saturated and unsaturated porous media.