期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Systematic improvement in Tong's B-type water drive method
1
作者 Zheyuan Fan Yudong Fan Yinghong Su 《Energy Geoscience》 2023年第2期28-34,共7页
Tong's B-type water drive method was proposed as early as the 1970s and has been widely applied in the dynamic prediction and effective evaluation of oilfield development.Through extensive applications and studies... Tong's B-type water drive method was proposed as early as the 1970s and has been widely applied in the dynamic prediction and effective evaluation of oilfield development.Through extensive applications and studies,many researchers found that the statistical constants in the formula of the Tong's B-type water drive method(also referred to as the Tong's B-type formula)are not applicable to multiple types of reservoirs,especially low-permeability ones,due to the limited range of reservoir types when the formula was conceived.Moreover,they put forward suggestions to improve the Tong's B-type formula,most of which focused on the research and calculation of the first constant in the formula.For oilfields in the development stages of high or ultra-high water cuts,it is widely accepted that different types of reservoirs have different limit water cuts.This understanding naturally makes it necessary to further modify the Tong's B-type formula.It is practically significant to establish the water drive formula and cross plot considering that the two constants in the formula vary with reservoir type.By analyzing the derivation process and conditions of the Tong's B-type formula,this study points out two key problems,i.e.,the two constants 7.5 and 1.69 in the formula are not applicable to all types of reservoir.Given this,this study establishes a function between key reservoir parameters and the first constant and another function between key reservoir parameters and recovery efficiency.Based on the established two functions and considering that different types of oil reservoir have different limit water cuts,this study develops an improved Tong's B-type formula and prepares the corresponding improved cross plot.The results of this study will improve the applicability and accuracy of Tong's B-type water drive method in predicting the trend of water cut increasing for different types of oil reservoirs. 展开更多
关键词 Oilfield development water drive curve Tong's B-Type water drive method water cut increase trend Evaluation of development effect
下载PDF
A Method for Calculating Oil Field Relative Permeability Curve by Using Water Drive Characteristic Curve in High Water Cut Stage
2
作者 Juan Du 《Journal of Geoscience and Environment Protection》 2022年第2期47-54,共8页
With the production of strong bottom water reservoir, it will soon enter the ultra-high water cut stage. After entering the ultra-high water cut period, the main means of stable production is liquid extraction. Large ... With the production of strong bottom water reservoir, it will soon enter the ultra-high water cut stage. After entering the ultra-high water cut period, the main means of stable production is liquid extraction. Large liquid volume has a certain impact on the physical property distribution and fluid seepage law of the oilfield. The relative permeability curve measured according to the industry standard is not used for the prediction of development indicators and the understanding of the dynamic law of the oilfield. In order to understand the characteristics of water drive law in high water cut stage of water drive oilfield, starting from the water drive characteristic curve in high water cut stage, the method for calculating the relative permeability curve is deduced. Through numerical simulation verification and fitting the actual production data, it is confirmed that the obtained relative permeability curve is in line with the reality of the oilfield, It can provide some guiding significance for understanding the production law and water drive law of strong bottom water reservoir in ultra-high water cut stage. 展开更多
关键词 Strong Bottom water Reservoir High water Cut Stage water drive curve Relative Permeability curve
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部