期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Systematic improvement in Tong's B-type water drive method
1
作者 Zheyuan Fan Yudong Fan Yinghong Su 《Energy Geoscience》 2023年第2期28-34,共7页
Tong's B-type water drive method was proposed as early as the 1970s and has been widely applied in the dynamic prediction and effective evaluation of oilfield development.Through extensive applications and studies... Tong's B-type water drive method was proposed as early as the 1970s and has been widely applied in the dynamic prediction and effective evaluation of oilfield development.Through extensive applications and studies,many researchers found that the statistical constants in the formula of the Tong's B-type water drive method(also referred to as the Tong's B-type formula)are not applicable to multiple types of reservoirs,especially low-permeability ones,due to the limited range of reservoir types when the formula was conceived.Moreover,they put forward suggestions to improve the Tong's B-type formula,most of which focused on the research and calculation of the first constant in the formula.For oilfields in the development stages of high or ultra-high water cuts,it is widely accepted that different types of reservoirs have different limit water cuts.This understanding naturally makes it necessary to further modify the Tong's B-type formula.It is practically significant to establish the water drive formula and cross plot considering that the two constants in the formula vary with reservoir type.By analyzing the derivation process and conditions of the Tong's B-type formula,this study points out two key problems,i.e.,the two constants 7.5 and 1.69 in the formula are not applicable to all types of reservoir.Given this,this study establishes a function between key reservoir parameters and the first constant and another function between key reservoir parameters and recovery efficiency.Based on the established two functions and considering that different types of oil reservoir have different limit water cuts,this study develops an improved Tong's B-type formula and prepares the corresponding improved cross plot.The results of this study will improve the applicability and accuracy of Tong's B-type water drive method in predicting the trend of water cut increasing for different types of oil reservoirs. 展开更多
关键词 Oilfield development water drive curve Tong's B-Type water drive method water cut increase trend Evaluation of development effect
下载PDF
Three-dimensional physical simulation and optimization of water injection of a multi-well fractured-vuggy unit 被引量:6
2
作者 Ji-Rui HOU Ze-Yu Zheng +4 位作者 Zhao-Jie Song Min LUO Hai-Bo Li Li Zhang Deng-Yu Yuan 《Petroleum Science》 SCIE CAS CSCD 2016年第2期259-271,共13页
With complex fractured-vuggy heterogeneous structures, water has to be injected to facilitate oil pro- duction. However, the effect of different water injection modes on oil recovery varies. The limitation of existing... With complex fractured-vuggy heterogeneous structures, water has to be injected to facilitate oil pro- duction. However, the effect of different water injection modes on oil recovery varies. The limitation of existing numerical simulation methods in representing fractured- vuggy carbonate reservoirs makes numerical simulation difficult to characterize the fluid flow in these reservoirs. In this paper, based on a geological example unit in the Tahe Oilfield, a three-dimensional physical model was designed and constructed to simulate fluid flow in a fractured-vuggy reservoir according to similarity criteria. The model was validated by simulating a bottom water drive reservoir, and then subsequent water injection modes were optimized. These were continuous (constant rate), intermittent, and pulsed injection of water. Experimental results reveal that due to the unbalanced formation pressure caused by pulsed water injection, the swept volume was expanded and consequently the highest oil recovery increment was achieved. Similar to continuous water injection, intermit- tent injection was influenced by factors including the connectivity of the fractured-vuggy reservoir, well depth, and the injection-production relationship, which led to a relative low oil recovery. This study may provide a constructive guide to field production and for the devel- opment of the commercial numerical models specialized for fractured-vuggy carbonate reservoirs. 展开更多
关键词 Multi-well fractured-vuggy unit Three-dimensional physical model Similarity criteria Bottom water drive. Optimization of water injection mode
下载PDF
A Method for Calculating Oil Field Relative Permeability Curve by Using Water Drive Characteristic Curve in High Water Cut Stage
3
作者 Juan Du 《Journal of Geoscience and Environment Protection》 2022年第2期47-54,共8页
With the production of strong bottom water reservoir, it will soon enter the ultra-high water cut stage. After entering the ultra-high water cut period, the main means of stable production is liquid extraction. Large ... With the production of strong bottom water reservoir, it will soon enter the ultra-high water cut stage. After entering the ultra-high water cut period, the main means of stable production is liquid extraction. Large liquid volume has a certain impact on the physical property distribution and fluid seepage law of the oilfield. The relative permeability curve measured according to the industry standard is not used for the prediction of development indicators and the understanding of the dynamic law of the oilfield. In order to understand the characteristics of water drive law in high water cut stage of water drive oilfield, starting from the water drive characteristic curve in high water cut stage, the method for calculating the relative permeability curve is deduced. Through numerical simulation verification and fitting the actual production data, it is confirmed that the obtained relative permeability curve is in line with the reality of the oilfield, It can provide some guiding significance for understanding the production law and water drive law of strong bottom water reservoir in ultra-high water cut stage. 展开更多
关键词 Strong Bottom water Reservoir High water Cut Stage water Drive Curve Relative Permeability Curve
下载PDF
A NEW METHOD FOR IMPROVING WATER DRIVE RESULT AND LEASE TEST
4
作者 Li Xianhong,Fan Yuping and Cheng Jincai(Liaohe petroleum Administration) 《China Oil & Gas》 CAS 1996年第2期81-82,共2页
ANEWMETHODFORIMPROVINGWATERDRIVERESULTANDLEASETEST¥LiXianhong,FanYupingandChengJincai(LiaohepetroleumAdminis... ANEWMETHODFORIMPROVINGWATERDRIVERESULTANDLEASETEST¥LiXianhong,FanYupingandChengJincai(LiaohepetroleumAdministration)Keywords:... 展开更多
关键词 water drive.water flooding.Profile control
下载PDF
Analysis of driving forces of water demand in Jing-Jin-Ji district in recent years based on water demand field theory 被引量:1
5
作者 HUANG Ze LIU JiaHong +3 位作者 MEI Chao WANG Hao SHAO WeiWei LI ZeJin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第12期2593-2605,共13页
In recent years,urbanization has accelerated and the gap between urban water supply and demand has become more significant.This phenomenon has led to greater demands on urban water resource management. Thus,analyses o... In recent years,urbanization has accelerated and the gap between urban water supply and demand has become more significant.This phenomenon has led to greater demands on urban water resource management. Thus,analyses of the forces that drive urban water demand growth can help efficient management of urban water resources. "Jing-Jin-Ji" refers to the district composed of Beijing and Tianjin,municipality as well as Hebei Province,which is among the political and economic centers of China. The traditional analysis of driving force for water resources often consider cities as independent individuals and ignores the interaction between them. Such method cannot describe the spatial distribution of regional water demand. In this study,the water demand field theory is used to construct water demand and social development fields for the Jing-Jin-Ji district with relevant indicators. The distribution trends of the two fields,and the correlation of their intensities,are then analyzed. Principal component analysis is used to specifically determine the forces that drive water demand at different stages of development.Results indicate that the water demand field theory can accurately describe spatial variations in water demand intensity in the study area. The main driving force for water demand in the Jing-Jin-Ji district from 2000 to 2014 is the growth of urban population. However,in 2015 and 2016,"GDP of the tertiary industry" overtook it. The results of this study can serve as a basis for regional water demand forecasting,with large potential to be applied to urban water resource management. 展开更多
关键词 water demand field degree of social development driving forces of water demand
原文传递
Experimental study of the relationship between fluid density and saturation and sonic wave velocity of rock samples from the WXS Depression,South China Sea
6
作者 Pei Fagen Zou Changchun +4 位作者 He Tao Pan Lingzhi Xiao Kun Shi Ge Ren Keying 《Petroleum Science》 SCIE CAS CSCD 2011年第1期43-48,共6页
The relationship between fluid density and saturation and sonic wave velocity of rock samples taken from the WXS Depression in the South China Sea was studied by an oil-water replacement experiment under simulated in-... The relationship between fluid density and saturation and sonic wave velocity of rock samples taken from the WXS Depression in the South China Sea was studied by an oil-water replacement experiment under simulated in-situ temperature and pressure conditions.Two kinds of low-density oils(0.691 and 0.749 g/cm^3) and two kinds of high-density oils(0.834 and 0.873 g/cm^3) were used to saturate the rock samples at different oil-saturation states,and the saturated P- and S-wave velocities were measured.Through Gassmann's equation,the theoretical P- and S-wave velocities were also calculated by the fluid replacement method.With the comparison of the measured values and the theoretical values, this study comes to the following conclusions.(1) With the increase of oil saturation and the decrease of water saturation,the P-wave velocity of rock samples saturated by low-density oil increases and the changing rule is in accord with the effective fluid theory;the P-wave velocity of rock samples saturated by high-density oil decreases and the changing rule goes against the theory.(2) With the increase of oil density(namely 0.691→0.749→0.834→0.873 g/cm^3) when oil saturation is unchanged,P-wave velocity increases gradually.(3) The S-wave velocity is always stable and is not affected by the change of oil density and saturation.The results can be used to constrain pre-stack seismic inversion,and the variation rule of sonic wave velocity is valuable for hydrocarbon identification in the study area. 展开更多
关键词 Rock physics SATURATION compressional wave shear wave water drive Gassmann's equation fluid replacement
下载PDF
Characterization of pore volume of cumulative water injection distribution 被引量:1
7
作者 Guoqing Feng MingLe Yu 《Petroleum》 2015年第2期158-163,共6页
Pore volume of Cumulative water injection is one of the factors for evaluating water flood effect in a water flood oil field.In previous study,there were limited lab studies for evaluating oil displacement efficiency.... Pore volume of Cumulative water injection is one of the factors for evaluating water flood effect in a water flood oil field.In previous study,there were limited lab studies for evaluating oil displacement efficiency.A method to characterize the distribution of pore volume of cumulative water injection is proposed in this paper,and it is verified by a five-spot water flooding streamline simulation model.The logarithmic relation between pore volume of cumulative water injection and water saturation is established by regression.An inflection point and limit point of cumulative water injection pore volume are identified.Current simulation model indicates inflection point appears after 2e5 pore volume(PV)injection,and limit point appears after 15e25 PV injection.Both inflection and limit point vary in different regions of reservoir. 展开更多
关键词 water drive reservoir Cumulative water injection pore volume Numerical flow simulation Inflection point Limit point Recovery factor
原文传递
Evaluation and Hydrological Application of CMADS Reanalysis Precipitation Data against Four Satellite Precipitation Products in the Upper Huaihe River Basin, China 被引量:1
8
作者 Shanhu JIANG Ruolan LIU +4 位作者 Liliang REN Menghao WANG Junchao SHI Feng ZHONG Zheng DUAN 《Journal of Meteorological Research》 SCIE CSCD 2020年第5期1096-1113,共18页
Satellite-and reanalysis-based precipitation products are important data source for precipitation, particularly in areas with a sparse gauge network. Here, five open-access precipitation products, including the newly ... Satellite-and reanalysis-based precipitation products are important data source for precipitation, particularly in areas with a sparse gauge network. Here, five open-access precipitation products, including the newly released China Meteorological Assimilation Driving Datasets for the Soil and Water Assessment Tool(SWAT) model(CMADS)reanalysis dataset and four widely used bias-adjusted satellite precipitation products [SPPs;i.e., Tropical Rainfall Measuring Mission(TRMM) Multisatellite Precipitation Analysis 3B42 Version 7(TMPA 3B42V7), Climate Prediction Center(CPC) morphing technique satellite–gauge blended product(CMORPH-BLD), Climate Hazards Group Infrared Precipitation with Station Data(CHIRPS), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record(PERSIANN-CDR)], were assessed. These products were first compared with the gauge observed data collected for the upper Huaihe River basin, and then were used as forcing data for streamflow simulation by the Xin’anjiang(XAJ) hydrological model under two scenarios with different calibration procedures. The performance of CMADS precipitation product for the Chinese mainland was also assessed. The results show that:(1) for the statistical assessment, CMADS and CMORPH-BLD perform the best, followed by TMPA 3B42V7, CHIRPS, and PERSIANN-CDR, among which the correlation coefficient(CC) and rootmean-square error(RMSE) values of CMADS are optimal, although it exhibits certain significant negative relative bias(BIAS;-22.72%);(2) CMORPH-BLD performs the best in capturing and detecting rainfall events, while CMADS tends to underestimate heavy and torrential precipitation;(3) for streamflow simulation, the performance of using CMADS as input is very good, with the highest Nash–Sutcliffe efficiency(NSE) values(0.85 and 0.75 for calibration period and validation period, respectively);and(4) CMADS exhibits high accuracy in eastern China while with significant negative BIAS, and the performance declines from southeast to northwest. The statistical and hydrological evaluations show that CMADS and CMORPH-BLD have high potential for observing precipitation. As high negative BIAS values showed up in CMADS evaluation, further study on the error sources from original data and calibration algorithms is necessary. This study can serve as a reference for selecting precipitation products in datascarce regions with similar climates and topography in the Global Precipitation Measurement(GPM) era. 展开更多
关键词 reanalysis precipitation data China Meteorological Assimilation driving Datasets for the Soil and water Assessment Tool(SWAT)model(CMADS) satellite precipitation hydrological evaluation Xin’anjiang(XAJ)hydrological model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部