期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Response of soil water dynamics to precipitation years under different vegetation types on the northern Loess Plateau, China 被引量:13
1
作者 LIU Bingxia SHAO Ming'an 《Journal of Arid Land》 SCIE CSCD 2016年第1期47-59,共13页
Implementation of the Grain-for-Green project has led to rapid land cover changes and resulted in a significantly increased vegetation cover on the Loess Plateau of China during the past few decades. The main objectiv... Implementation of the Grain-for-Green project has led to rapid land cover changes and resulted in a significantly increased vegetation cover on the Loess Plateau of China during the past few decades. The main objective of this study was to examine the responses of soil water dynamics under four typical vegetation types against precipitation years. Soil water contents (SWCs) were measured in 0–4.0 m profiles on a hillslope under the four vegetation types of shrub, pasture, natural fallow and crop in a re-vegetated catchment area from April to October in normal (2010), dry (2011), wet (2014) and extremely wet (2013) years. The results indicated that precipitation and vegetation types jointly controlled the soil water temporal dynamics and profile characteristics in the study region. SWCs in 0–4.0 m profiles of the four vegetation types were ranked from high to low as crop>fallow>pasture>shrub and this pattern displayed a temporal stability over the four years. In the extremely wet year, SWC changes occurred in the 0–2.0 m layer under shrub and pasture while the changes further extended to the depth of 4.0-m deep layers under fallow and crop. In the other three years, SWCs changes mainly occurred in the 0–1.0 m layer and kept relatively stable in the layers deeper than 1.0 m for all the four vegetation types. The interannual variation in soil depth of SWCs was about 0–2.0 m for shrub and pasture, about 0–3.4 m for fallow and about 0–4.0 m for crop, respectively. The dried soil layers formed at the depths of 1.0, 0.6, 1.6 and 0.7 m under shrub, and 1.0, 1.0, 2.0 and 0.9 m under pasture, respectively in 2010, 2011, 2013 and 2014. The infiltrated rainwater mostly stayed in the 0–1.0 m layer and hardly supplied to soil depth >1.0 m in normal, dry and wet years. Even in the extremely wet year of 2013, rainwater recharge depth did not exceed 2.0 m under shrub and pasture. This implied that soil desiccation was difficult to remove in normal, dry and wet years, and soil desiccation could be removed in 1.0–2.0 m soil layers even in the extremely wet year under shrub and pasture. The results indicated that the natural fallow was the best vegetation type for achieving sustainable utilization of soil water and preventing soil desiccation. 展开更多
关键词 precipitation pattern RESTORATION soil water dynamics soil desiccation vegetation type
下载PDF
Relationship between sand-dust weather and water dynamics of desert areas in the middle reaches of Heihe River
2
作者 Yun Niu XianDe Liu +3 位作者 Xin Li YanQiang Wei Hu Zhang XiaoYan Li 《Research in Cold and Arid Regions》 CSCD 2016年第6期516-523,共8页
Sand-dust weather has become an international social-environmental issue of common concern, and constitutes a serious threat to human lives and economic development. In order to explore the responses of natural desert... Sand-dust weather has become an international social-environmental issue of common concern, and constitutes a serious threat to human lives and economic development. In order to explore the responses of natural desert sand and dust to the dynamics of water in desertification, we extracted long-term monitoring data related to precipitation, soil water, groundwater, and sand-dust weather. These data originated from the test stations for desertification control in desert areas of the middle reaches of the Heihe River. We used an algorithm of characteristic parameters, correlations, and multiple regression analysis to establish a regression model for the duration of sand-dust weather. The response char-acteristics of the natural desert sand and dust and changes of the water inter-annual and annual variance were also examined. Our results showed: (1) From 2006 to 2014 the frequency, duration, and volatility trends of sand-dust weather obviously increased, but the change amplitudes of precipitation, soil water, and groundwater level grew smaller. (2) In the vegetative growth seasons from March to November, the annual variance rates of the soil moisture content in each of four studied layers of soil samples were similar, and the changes in the frequency and duration of sand-dust weather were similar. (3) Our new regression equation for the duration of sand-dust weather passed the R test, F test, and t test. By this regression model we could predict the duration of sand-dust weather with an accuracy of 42.9%. This study can thus provide technological support and reference data for water resource management and re-search regarding sand-dust weather mechanisms. 展开更多
关键词 sand-dust weather water dynamics regression model middle reaches of the Heihe River
下载PDF
Water Dynamics under Drip Irrigation to Proper Manage Water Use in Arid Zone
3
作者 Siguibnoma Kevin Landry Ouédraogo Marcel Bawindsom Kébré Francois Zougmoré 《Journal of Agricultural Chemistry and Environment》 2021年第1期57-68,共12页
The water resources reduction due to climate changes and also population increase, have contributed to increas<span style="font-family:Verdana;">ing</span><span style="font-family:Verdana... The water resources reduction due to climate changes and also population increase, have contributed to increas<span style="font-family:Verdana;">ing</span><span style="font-family:Verdana;"> the constraint on water disponibility and accessibility. In the agricultural field, we need moderate soil and water resources management. This work aims to simulate water dynamics in soil under drip irrigation system in arid regions to better manage irrigation water. Simulations are done with soil physical properties of Burkina Faso. We assess maize plant water requirements for the whole growing season. With Hydrus 2D, we simulate water supply in the soil column. We assign atmospheric conditions on the top of the domain, zero flux of water on the lateral sides, and free drainage on the bottom boundary domain. We perform many irrigation events to analyze wetting pattern distribution around the em</span><span style="font-family:Verdana;">i</span><span style="font-family:Verdana;">tter</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> which allowed us to contain the amount of irrigation water applied, only around the area dominated by roots</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> and then reduce water losses that roots cannot uptake. According to the different growing stages of the maize crop, we choose proper irrigation duration and frequency, and suggest irrigation schedule for the whole growing season.</span> 展开更多
关键词 Drip Irrigation water dynamics Hydrus (2D/3D) water
下载PDF
Modelling soil water dynamics and root water uptake for apple trees under water storage pit irrigation 被引量:1
4
作者 Xianghong Guo Tao Lei +4 位作者 Xihuan Sun Juanjuan Ma Lijian Zheng Shaowen Zhang Qiqi He 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第5期126-134,共9页
Water storage pit irrigation is a new method suitable for apple trees.It comes with advantages such as water saving,water retention and drought resistance.A precise study of soil water movement and root water uptake i... Water storage pit irrigation is a new method suitable for apple trees.It comes with advantages such as water saving,water retention and drought resistance.A precise study of soil water movement and root water uptake is essential to analyse and show the advantages of the method.In this study,a mathematical model(WSPI-WR model)for 3D soil water movement and root water uptake under water storage pit irrigation was established based on soil water dynamics and soil moisture and root distributions.Moreover,this model also considers the soil evaporation,pit wall evaporation and water level variation in the pit.The finite element method was used to solve the model,and the law of mass conservation was used to analyse the water level variation.The model was validated by experimental data of the sap flow of apple trees and soil moisture in the orchard.Results showed that the WSPI-WR model is highly accurate in simulating the root water uptake and soil water distributions.The WSPI-WR model can be used to simulate root water uptake and soil water movement under water storage pit irrigation.The simulation showed that orchard soil water content and root water uptake rate centers on the storage pit with an ellipsoid distribution.The maximum distribution region of soil water and root water uptake rate was near the bottom of the pit.Distribution can reduce soil evaporation in the orchard and improve the soil water use efficiency in the middle-deep soil. 展开更多
关键词 root water uptake soil water dynamics numerical simulation water storage pit irrigation apple tree
原文传递
DYNAMICS MODEL AND SIMULATION OF FLAT VALVE SYSTEM OF INTERNAL COMBUSTION WATER PUMP 被引量:39
5
作者 Zhang Hongxin Zhang Tiezhu +2 位作者 Wang Yushun Zhao Hong Huo Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第3期411-414,共4页
The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase s... The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase step when outlet valve or inlet valve opens, but is more gently in other time; The volume efficiency is influenced by the output pressure slightly, and decreases as the working rotational speed increases; When the inherent frequency of the valves is integer multiple of the working frequency, the volume efficiency of system will decrease evidently. 展开更多
关键词 Check valve Simulation dynamics model Internal combustion water pump(ICWP)
下载PDF
Effects of Groundwater with Various Salinities on Evaporation and Redistribution of Water and Salt in Saline-sodic Soils in Songnen Plain,Northeast China
6
作者 ZHU Wendong ZHAO Dandan +6 位作者 YANG Fan WANG Zhichun DONG Shide AN Fenghua MA Hongyuan ZHANG Lu TIBOR Tóth 《Chinese Geographical Science》 SCIE CSCD 2023年第6期1141-1152,共12页
Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and... Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and distributions of soil water and salt in Songnen Plain,Northeast China,five levels of groundwater sodium adsorption ration of water(SARw)and total salt content(TSC mmol/L)were conducted in an oil column lysimeters.The five treated groundwater labeled as ST0:0,ST0:10,ST5:40,ST10:70 and ST20:100,were prepared with NaCl and CaCl2 in proportion,respectively.The results showed the groundwater evaporation(GWE)and soil evaporation(SE)increased firstly and then decreased with the increase of groundwater salinity.The values of GWE and SE in ST10:70 treatment were the highest,which were 2.09 and 1.84 times the values in the ST0:0 treatment with the lowest GWE and SE.There was a positive linear correlation between GWE and the Ca^(2+)content in groundwater,with R^(2)=0.998.The soil water content(SWC)of ST0:0 treatment was significantly(P<0.05)less than those of other treatments during the test.The SWC of the ST0:0 and ST0:10 treatments increased with the increase of soil depth,while the other treatments showed the opposite trend.Statistical analysis indicated the SWC in the 0–60 cm soil layer was positively correlated with the groundwater TSC and its ion contents during the test.Salt accumulation occurred in the topsoil and the salt accumulation in the 0–20 cm soil layer was significantly(P<0.05)greater than that in the subsoil.This study revealed the effects of the salinity level of groundwater,especially the Ca^(2+)content and TSC of groundwater,on the GWE and distributions of soil water and salt,which provided important support for the prevention and reclamation of soil salinization and sodificaton in shallow groundwater regions. 展开更多
关键词 groundwater evaporation sodium adsorption ratio total salt content ion composition soil salinization water and salt dynamics Songnen Plain China
下载PDF
MOLECULAR DYNAMICS SIMULATIONS OF FILLED AND EMPTY CAGE-LIKE WATER CLUSTERS IN LIQUID WATER AND THEIR SIGNIFICANCE TO GAS HYDRATE FORMATION MECHANISMS
7
作者 GUO Guangjun,ZHANG Yigang and ZHAO Yajuan Institute of Geology and Geophysics,Chinese Academy of sciences Beijing 100029,Chinese 《化工学报》 EI CAS CSCD 北大核心 2003年第z1期62-66,共5页
Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetime... Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetimes of these clusters are calculated according to their Lindemann index δ (t) using the criteria of δ≥0.07. For both the filled and empty clusters, we find the dynamics of bulk water determines the lifetimes of cage-like water clusters, and that the lifetime of 512 62 cage-like cluster is the same as that of 512 cage-like cluster. Although the methane molecule indeed makes the filled cage-like cluster more stable than the empty one, the empty cage-like cluster still has chance to be long-lived compared with the filled clusters. These observations support the labile cluster hypothesis on the formation mechanisms of gas hydrates. 展开更多
关键词 like in time that were MOLECULAR dynamics SIMULATIONS OF FILLED AND EMPTY CAGE-LIKE water CLUSTERS IN LIQUID water AND THEIR SIGNIFICANCE TO GAS HYDRATE FORMATION MECHANISMS of cage GAS
下载PDF
Effects of rainwater harvesting on herbage diversity and productivity in degraded Aravalli hills in western India 被引量:3
8
作者 G. Singh G.R. Choadhary +1 位作者 B. Ram N.K. Limba 《Journal of Forestry Research》 SCIE CAS CSCD 2011年第3期329-340,共12页
Over-exploitation and rural growth have severely damaged native vegetations of Aravalli hills in Rajasthan, India. This study was conducted to evaluate the effects of different restoration practices (i.e., rainwater ... Over-exploitation and rural growth have severely damaged native vegetations of Aravalli hills in Rajasthan, India. This study was conducted to evaluate the effects of different restoration practices (i.e., rainwater harvesting (RWH) and planting of tree seedlings) on improve- ment in soil water and nutrients and growth and biomass of herbaceous vegetation. Contour trench (CT), Gradonie (G), Box trench (BT), V-ditch (VD) and a control were imposed on 75 plots (each of 700 m 2 ) in natural slope gradient defined as 10%, 10% 20% and 20% slopes in 2005. Each plot had three micro-sites of 1-m 2 at up (USP), middle (MSP) and lower (LSP) part of the plot for observation in 2008. The existed gradient (due to soil texture and topographic features) of soil pH, EC, SOC, NH 4 - N, NO 3 -N and PO 4 -P in June 2005 between 20% to 10% slopes were decreased in 2008 after applying RWH techniques. Such improvement in soil status promoted vegetation growth and biomass in higher slope gra- dients. Soil water, species diversity and herbage biomass increased from USP to LSP, and RWH techniques had positive role in improving SOC, nutrients, vegetation population, evenness and growth at MSP. Despite of lowest SWC, regular rain and greater soil water usage enhanced green and dry herbage biomasses in 10% 20% and 20% slopes, compared with 10% slope. The highest diversity in CT treatment was related to herbage biomass, which was enhanced further by highest concentrations of SOC and PO 4 -P. Further, CT treatment was found to be the best treat- ment in minimizing biomass variance in different slopes. Conclusively, soil texture and topographic features controlled soil water and nutrients availability. Rainwater harvesting techniques increased soil water storage and nutrient retention and also enhanced vegetation status and biomass by minimizing the effects of hillslopes. Thus depending upon the site conditions, suitable RWH technique could be adopted to increase herb- age biomass while rehabilitating the degraded hills. 展开更多
关键词 herbage growth and biomass HILLSLOPES soil nutrients soil water dynamics vegetation diversity
下载PDF
Dynamic Study on Water Stability of Soil Structure and Soil Characteristics of Several Types of Soils in Southwest China 被引量:2
9
作者 SHEN Nan HE Yurong XU Xiangming 《Wuhan University Journal of Natural Sciences》 CAS 2008年第3期336-342,共7页
Three suborder soils in southwest China were adopted, namely Ustic Vertisol, Stagnic Anthrosol and Ustic Ferrosol, so as to carry out the basic physical and chemical analysis respectively, to design a dynamic measurin... Three suborder soils in southwest China were adopted, namely Ustic Vertisol, Stagnic Anthrosol and Ustic Ferrosol, so as to carry out the basic physical and chemical analysis respectively, to design a dynamic measuring method for water stability of soil structure and conduct the comparative study on the quality of the soil structure. The results indicated that (1) The water stability dynamic characteristic of the soil structure could well reflect the maintaining capability of the soil structure as time goes on. (2) The quality of several soil structures in southwest China was sequenced as follows: Stagnic Anthrosols 〉 Ustic Vertisols 〉 Ustic Ferrosols. (3) The water stability of soil structure is very positively correlated with the capillary porosity and the clay particle (D 〈 0.002 mm) content (Co), but is very negatively correlated with the silt (D is 0.05-0.002 ram) content (Csc), and (4) The dynamic functional equation of the water stability of soil structure in southwest China was established, so that the water stability characteristics of various soil structures could be quantitatively expressed and the quality of different soil structures can be quantitatively compared from each other. 展开更多
关键词 soil structure dynamic water stability soil erosion
下载PDF
Dynamic behaviors of water contained in calcium-silicate-hydrate gel at different temperatures studied by quasi-elastic neutron scattering spectroscopy 被引量:2
10
作者 易洲 邓沛娜 +1 位作者 张丽丽 李华 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第10期271-278,共8页
The dynamic behaviors of water contained in calcium-silicate-hydrate(C-S-H) gel with different water content values from 10%to 30%(by weight),are studied by using an empirical diffusion model(EDM) to analyze the... The dynamic behaviors of water contained in calcium-silicate-hydrate(C-S-H) gel with different water content values from 10%to 30%(by weight),are studied by using an empirical diffusion model(EDM) to analyze the experimental data of quasi-elastic neutron scattering(QENS) spectra at measured temperatures ranging from 230 K to 280 K.In the study,the experimental QENS spectra with the whole Q-range are considered.Several important parameters including the bound/immobile water elastic coefficient A,the bound water index BWI,the Lorentzian with a half-width at half-maximum(HWHM) Γ;(Q) and Γ;(Q),the self-diffusion coefficients D;and D;of water molecules,the average residence times τ;and τ;,and the proton mean squared displacement(MSD)(u;) are obtained.The results show that the QENS spectra can be fitted very well not only for small Q(≤1 A;) but also for large Q.The bound/immobile water fraction in a C-S-H gel sample can be shown by the fitted BWI.The distinction between bound/immobile and mobile water,which includes confined water and ultra-confined water,can be seen by the fitted MSD.All the MSD tend to be the smallest value below 0.25 A;(the MSD of bound/immobile water) as the Q increases to 1.9 A;no matter what the temperature and water content are.Furthermore,by the abrupt changes of the fitted values of D;,τ;,and Γ;(Q),a crossover temperature at 250 K,namely the liquid-to-crystal-like transition temperature,can be identified for confined water in large gel pores(LGPs) and/or small gel pores(SGPs) contained in the C-S-H gel sample with 30% water content. 展开更多
关键词 dynamics of water quasi-elastic neutron scattering spectra empirical diffusion model C–S–H gel pastes
下载PDF
Dynamic Characteristics and Simplified Numerical Methods of An All-Vertical-Piled Wharf in Offshore Deep Water 被引量:5
11
作者 张华庆 孙熙平 +2 位作者 王元战 尹纪龙 王朝阳 《China Ocean Engineering》 SCIE EI CSCD 2015年第5期705-718,共14页
There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly aff... There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications. 展开更多
关键词 offshore deep water port all-vertical-piled wharf dynamic characteristics wave cyclic loads dynamic response simplified calculating methods
下载PDF
Asymmetry of the water flux induced by the deformation of a nanotube 被引量:1
12
作者 何俊霞 陆杭军 +4 位作者 刘扬 吴锋民 聂雪川 周晓艳 陈艳燕 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期372-377,共6页
The behavior of nano-confined water is expected to be fundamentally different from the behavior of bulk water.At the nanoscale,it is still unclear whether water flows more easily along the convergent direction or the ... The behavior of nano-confined water is expected to be fundamentally different from the behavior of bulk water.At the nanoscale,it is still unclear whether water flows more easily along the convergent direction or the divergent one,and whether a hourglass shape is more convenient than a funnel shape for water molecules to pass through a nanotube.Here,we present an approach to explore these questions by changing the deformation position of a carbon nanotube.The results of our molecular dynamics simulation indicate that the water flux through the nanotube changes significantly when the deformation position moves away from the middle region of the tube.Different from the macroscopic level,we find water flux asymmetry(water flows more easily along the convergent direction than along the divergent one),which plays a key role in a nano water pump driven by a ratchet-like mechanism.We explore the mechanism and calculate the water flux by means of the Fokker-Planck equation and find that our theoretical results are well consistent with the simulation results.Furthermore,the simulation results demonstrate that the effect of deformation location on the water flux will be reduced when the diameter of the nanochannel increases.These findings are helpful for devising water transporters or filters based on carbon nanotubes and understanding the molecular mechanism of biological channels. 展开更多
关键词 single-walled carbon nanotube deformation position molecular dynamics simulation water flux
下载PDF
Towards full predictions of temperature dynamics in McNary Dam forebay using OpenFOAM 被引量:1
13
作者 Yu-Shi WANG Marcela POLITANO Ryan LAUGHERY 《Water Science and Engineering》 EI CAS CSCD 2013年第3期317-330,共14页
Hydroelectric facilities impact water temperature; low velocities in a reservoir increase residence time and enhance heat exchange in surface layers. In this study, an unsteady three-dimensional model was developed to... Hydroelectric facilities impact water temperature; low velocities in a reservoir increase residence time and enhance heat exchange in surface layers. In this study, an unsteady three-dimensional model was developed to predict the temperatm'e dynamics in the McNary Dam forebay. The model is based on the open-source code OpenFOAM. RANS equations with the Boussinesq approximation were used to solve the flow field. A: realizable k-ε model that accounts for the production of wind turbulence was developed. Solar radiation and convective heat transfer at the free surface were included. The result of the model was compared with the field data collected on August 18, 2004. Changes in diurnal stratification were adequately predicted by the model. Observed vertical and lateral temperature distributions were accurately captured. Results indicate that the model can be used as a numerical tool to assess structural and operational alternatives to reduce the forebay temperature. 展开更多
关键词 three-dimensional numerical simulation water temperature reservoir thermal dynamics OPENFOAM McNary Dam forebay
下载PDF
Numerical Simulation and Dynamical Analysis for Low Salinity Water Lens in the Expansion Area of the Changjiang Diluted Water 被引量:1
14
作者 张文静 朱首贤 +3 位作者 李训强 阮鲲 管卫兵 彭剑 《China Ocean Engineering》 SCIE EI CSCD 2014年第6期777-790,共14页
The low salinity water lenses(LSWLes) in the expansion area of the Changjiang diluted water(CDW) exist in a certain period of time in some years. The impact of realistic river runoff, ocean currents and weather co... The low salinity water lenses(LSWLes) in the expansion area of the Changjiang diluted water(CDW) exist in a certain period of time in some years. The impact of realistic river runoff, ocean currents and weather conditions need to be taken into account in the dynamical analysis of LSWL, which is in need of research. In this paper, the POM-σ-z model is used to set up the numerical model for the expansion of the CDW. Then LSWL in summer 1977 is simulated, and its dynamic mechanism driven by wind, tide, river runoff and the Taiwan Warm Current is also analyzed. The simulated results indicate that the isolated LSWL detaches itself from the CDW near the river mouth, and then moves towards the northeast region outside the Changjiang Estuary. Its maintaining period is from July 26 to August 11. Its formation and development is mainly driven by two factors. One is the strong southeasterly wind lasting for ten days. The other is the vertical tidal mixing during the transition from neap tide to spring tide. 展开更多
关键词 Changjiang diluted water low salinity water lens numerical simulation dynamic mechanism
下载PDF
Recurrence anomaly of ground water behavior before strong earthquakes in North China
15
作者 CAO Xin-lai(曹新来) +1 位作者 BIAN Qing-kai(边庆凯) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第z1期163-171,共9页
By analyzing the relationship between ground water behavior and strong seismic activity during the past more than 20 years in North China, we have found similar water level descending variation of a part of wells in ... By analyzing the relationship between ground water behavior and strong seismic activity during the past more than 20 years in North China, we have found similar water level descending variation of a part of wells in the short-term stage before several strong earthquakes. The characteristics of anomaly are: at the beginning, water level dropped abruptly or accelerated to drop; then it turned to slow rising with a smaller amplitude than that of descending; earthquakes occurred during the slow-rising process of water level, and at that time or before earthquake occurrence, water level rose with a large amplitude. Among more than 100 wells in North China, the descending anomalies were not recorded for many times, but similar variation processes of water level were noted at different wells before several strong earthquakes, which proves that seismic precursory anomalies of ground water are of certain recurrence features, occurring repeatedly before different strong earthquakes. Therefore, it is necessary to study the genesis of this type of anomaly and its relationship with strong seismic activity. 展开更多
关键词 North China strong earthquake dynamic state of water level short-term stage RECURRENCE
下载PDF
Dynamic Water and Salt Changes in Saline Wasteland on the Lower Edge of Plain Reservoirs in the Desert Oasis Region
16
作者 Haiyan SUN 《Asian Agricultural Research》 2018年第1期29-33,共5页
In order to reveal the distribution characteristics of water and salt in the non-irrigated saline wasteland and the growth zone of the windbreaks surrounding the plain reservoir,the groundwater and soil monitoring poi... In order to reveal the distribution characteristics of water and salt in the non-irrigated saline wasteland and the growth zone of the windbreaks surrounding the plain reservoir,the groundwater and soil monitoring points were set up around the south area of Duolang Reservoir in the desert oasis.Monthly groundwater depth monitoring and soil water content and salt content fixed-point sampling for a period of 2 years were conducted.The results showed that the groundwater depth of salt wasteland in the area around the reservoir area changed slightly during the monitoring period of 2 years,and the average is 1.28 m.The soil moisture content increased with the increase of soil depth,and soil water content of 60-100 cm was larger than that of other soil layers.The salt content of the soil in the salt wasteland varied between 0.48 g/kg and8.86 g/kg in the two years,and the total salt content of different soil decreased with the increase of soil depth.The soil salt content changed greatly in 0-40 cm soil layers,with significant salt accumulation phenomenon.The soil salt content of windbreaks was significantly lower than that of the natural ecological forest. 展开更多
关键词 Plain reservoirs Saline wasteland Coefficient of variation water and salt dynamics
下载PDF
Nano watermill driven by revolving charge
17
作者 周晓艳 寇建龙 +3 位作者 聂雪川 吴锋民 刘扬 陆杭军 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期310-314,共5页
A novel nanoscale watermill for the unidirectional transport of water molecules through a curved single-walled carbon nanotube(SWNT) is proposed and explored by molecular dynamics simulations. In this nanoscale syst... A novel nanoscale watermill for the unidirectional transport of water molecules through a curved single-walled carbon nanotube(SWNT) is proposed and explored by molecular dynamics simulations. In this nanoscale system, a revolving charge is introduced to drive a water chain confined inside the SWNT, the charge and the tube together serving as a nano waterwheel and nano engine. A resonance-like phenomenon is found, and the revolving frequency of the charge plays a key role in pumping the water chain. The water flux across the SWNT increases with respect to the revolving frequency of the external charge and it reaches its maximum when the frequency is 4 THz. Correspondingly, the number of hydrogen bonds in the water chain inside the SWNT decreases dramatically as the frequency increases from 4 THz to 25 THz. The mechanism behind the resonance phenomenon has been investigated systematically. Our findings are helpful for the design of nanoscale fluidic devices and energy converters. 展开更多
关键词 water pumping molecular dynamics simulations carbon nanotube revolving charge
下载PDF
A new theoretical solution of the effect of atmospheric pressure on water level
18
作者 赵鹏君 《Acta Seismologica Sinica(English Edition)》 CSCD 1995年第2期317-323,共7页
Based on the partial differential equation governing the effect of atmospheric pressure on water level of confined well,deriving the boundary condition and considering the seepage water between well and aquifer,the au... Based on the partial differential equation governing the effect of atmospheric pressure on water level of confined well,deriving the boundary condition and considering the seepage water between well and aquifer,the author obtained the analytical solution of water level change in time domain under the action of an atmospheric pressure history with the Laplace transform method.This solution is composed of two terms:stable and retarded terms.The stable term is the multiplication of barometric efficiency and simultaneous atmospheric pressure,and it implies the value of water level after infinite time when the atmospheric pressure is a constant from the time in question.The retarded term is the transient process due to the time lag of water exchange between well and aquifer.From the solution,it is obtained that the interference of atmospheric pressure on water level is the integral superimposition of the contribution of all atmospheric pressure changes before the time in question.So that,we further found out the response function of pulsive atmospheric pressure history.Calculation shows:① The pulsive response function starts from zero and tends to a steady value,which is proportional to the barometric efficiency,when the time tends to infinity;② The retarded time depends on the mechanical property of aquifer and the radius of well.The larger the seepage coefficient,the smaller the radius of well and the thicker the aquifer,then the shorter the retarded time gets.This solution can be used as the theoretical basis for further analysis of the atmospheric effect and practical correcting method in the future. 展开更多
关键词 water level change seepage dynamic response
下载PDF
Terahertz spectroscopy of water in nonionic reverse micelles
19
作者 张佳琦 闫玉岳 +1 位作者 刘立媛 张伟力 《Chinese Optics Letters》 SCIE EI CAS CSCD 2024年第1期128-134,共7页
The dynamics of water within a nanopool of a reverse micelle is heavily affected by the amphiphilic interface.In this work,the terahertz(THz)spectra of cyclohexane/Igepal/water nonionic reverse micelle mixture are mea... The dynamics of water within a nanopool of a reverse micelle is heavily affected by the amphiphilic interface.In this work,the terahertz(THz)spectra of cyclohexane/Igepal/water nonionic reverse micelle mixture are measured by THz timedomain spectroscopy and analyzed with two Debye models and complex permittivity of background with volume ratios.Based on the fitted parameters of bulk and fast water,the molar concentration of all kinds of water molecules and hydration water molecule number per Igepal molecule are calculated.We find that slow hydration water has the highest proportion in water when the radius parameterω_(0)<10,while bulk water becomes the main component whenω_(0)≥10.The feature radius ratio of nonhydrated and hydrated water to total water nanopool is roughly obtained from 0.39 to 0.85 with increasingω_(0). 展开更多
关键词 reverse micelle water dynamics THz spectroscopy
原文传递
Soil salt leaching under different irrigation regimes: HYDRUS-1D modelling and analysis 被引量:20
20
作者 WenZhi ZENG Chi XU +1 位作者 JingWei WU JieSheng HUANG 《Journal of Arid Land》 SCIE CSCD 2014年第1期44-58,共15页
Field irrigation experiments were conducted in the Hetao Irrigation District of Inner Mongolia,China,to study the effects of irrigation regimes on salt leaching in the soil profile.The data were used to calibrate and ... Field irrigation experiments were conducted in the Hetao Irrigation District of Inner Mongolia,China,to study the effects of irrigation regimes on salt leaching in the soil profile.The data were used to calibrate and validate the HYDRUS-1D model.The results demonstrated that the model can accurately simulate the water and salt dynamics in the soil profile.The HYDRUS-1D model was then used to simulate 15 distinct irrigation scenarios.The results of the simulation indicated that irrigation amount did not have a significant effect on soil water storage but that increases in irrigation amount could accelerate salt leaching.However,when the irrigation amount was larger than 20 cm,the acceleration was not obvious.Compared with irrigating only once,intermittent irrigation had a better effect on increasing soil water storage and salt leaching,but excessive irrigation times and intervals did not improve salt leaching.In addition,we found that the irrigation regime of 20 cm,irrigated twice at 1-d intervals,might significantly increase salt leaching in the plough layer and decrease the risks of deep seepage and groundwater contamination. 展开更多
关键词 numerical simulation optimal irrigation regime secondary salinization water and salt dynamics
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部