Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)ar...Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)are promising devices for hydrogen production,given their high efficiency,rapid responsiveness,and compactness.Bipolar plates account for a relatively high percentage of the total cost and weight compared with other components of PEMWEs.Thus,optimization of their design may accelerate the promotion of PEMWEs.This paper reviews the advances in materials and flow-field design for bipolar plates.First,the working conditions of proton-exchange membrane fuel cells(PEMFCs)and PEMWEs are compared,including reaction direction,operating temperature,pressure,input/output,and potential.Then,the current research status of bipolar-plate substrates and surface coatings is summarized,and some typical channel-rib flow fields and porous flow fields are presented.Furthermore,the effects of materials on mass and heat transfer and the possibility of reducing corrosion by improving the flow field structure are explored.Finally,this review discusses the potential directions of the development of bipolar-plate design,including material fabrication,flow-field geometry optimization using threedimensional printing,and surface-coating composition optimization based on computational materials science.展开更多
Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm...Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm,electrodes,bipolar plates and end plates,etc.The existing industrial bipolar plate channel is concave-convex structure,which is manufactured by complicated and high-cost mold punching.This structure still results in uneven electrolyte flow and low current density in the electrolytic cell,further increasing in energy consumption and cost of AWE.Thereby,in this article,the electrochemical and flow model is firstly constructed,based on the existing industrial concave and convex flow channel structure of bipolar plate,to study the current density,electrolyte flow and bubble distribution in the electrolysis cell.The reliability of the model was verified by comparison with experimental data in literature.Among which,the electrochemical current density affects the bubble yield,on the other hand,the generated bubbles cover the electrode surface,affecting the active specific surface area and ohmic resistance,which in turn affects the electrochemical reaction.The result indicates that the flow velocity near the bottom of the concave ball approaches zero,while the flow velocity on the convex ball surface is significantly higher.Additionally,vortices are observed within the flow channel structure,leading to an uneven distribution of electrolyte.Next,modelling is used to optimize the bipolar plate structure of AWE by simulating the electrochemistry and fluid flow performances of four kinds of structures,namely,concave and convex,rhombus,wedge and expanded mesh,in the bipolar plate of alkaline water electrolyzer.The results show that the expanded mesh channel structure has the largest current density of 3330 A/m^(2)and electrolyte flow velocity of 0.507 m/s in the electrolytic cell.Under the same current density,the electrolytic cell with the expanded mesh runner structure has the smallest potential and energy consumption.This work provides a useful guide for the comprehensive understanding and optimization of channel structures,and a theoretical basis for the design of large-scale electrolyzer.展开更多
An effective oxygen evolution electrode with Ir0.6Sn0.4O2 was designed for proton exchange membrane(PEM)water electrolyzers.The anode catalyst layer exhibits a jagged structure with smaller particles and pores,which p...An effective oxygen evolution electrode with Ir0.6Sn0.4O2 was designed for proton exchange membrane(PEM)water electrolyzers.The anode catalyst layer exhibits a jagged structure with smaller particles and pores,which provide more active sites and mass transportation channels.The prepared IrSn electrode showed a cell voltage of 1.96 V at 2.0 A cm^-2 with Ir loading as low as 0.294 mg cm^-2.Furthermore,Ir Sn electrode with different anode catalyst loadings was investigated.The IrS n electrode indicates higher mass current and more stable cell voltage than the commercial Ir Black electrode at low loading.展开更多
Anion exchange membrane(AEM)electrolysis is a promising membrane-based green hydrogen production technology.However,AEM electrolysis still remains in its infancy,and the performance of AEM electrolyzers is far behind ...Anion exchange membrane(AEM)electrolysis is a promising membrane-based green hydrogen production technology.However,AEM electrolysis still remains in its infancy,and the performance of AEM electrolyzers is far behind that of well-developed alkaline and proton exchange membrane electrolyzers.Therefore,breaking through the technical barriers of AEM electrolyzers is critical.On the basis of the analysis of the electrochemical performance tested in a single cell,electrochemical impedance spectroscopy,and the number of active sites,we evaluated the main technical factors that affect AEM electrolyzers.These factors included catalyst layer manufacturing(e.g.,catalyst,carbon black,and anionic ionomer)loadings,membrane electrode assembly,and testing conditions(e.g.,the KOH concentration in the electrolyte,electrolyte feeding mode,and operating temperature).The underlying mechanisms of the effects of these factors on AEM electrolyzer performance were also revealed.The irreversible voltage loss in the AEM electrolyzer was concluded to be mainly associated with the kinetics of the electrode reaction and the transport of electrons,ions,and gas-phase products involved in electrolysis.Based on the study results,the performance and stability of AEM electrolyzers were significantly improved.展开更多
1.Introduction Hydrogen is an ideal energy carrier to tackle the energy crisis and greenhouse effect,because of its high energy density and low emission.The production,storage and transportation of hydrogen are key fa...1.Introduction Hydrogen is an ideal energy carrier to tackle the energy crisis and greenhouse effect,because of its high energy density and low emission.The production,storage and transportation of hydrogen are key factors to the practical application of hydrogen energy.As the scientific and technological understanding of the electrochemical devices was advancing in the past few decades,water electrolyzers based on the proton exchange membrane (PEM) have attracted much focus for its huge potential on the production of hydrogen via water splitting.PEM electrolyzers use perfluorinated sulfonic acid (PFSA) based membranes as the electrolyte.展开更多
We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed ...We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed laser ablation of Co,Fe,Ti,and Mo metals in acetone.The interaction between carbon s-p-orbitals and metal d-orbitals causes a redistribution of valence structure through charge transfer,leading to the formation of surface defects as observed by X-ray photoelectron spectroscopy.These defects influence the evolved TMCs,making them effective for hydrogen and oxygen evolution reactions(HER and OER)in an alkaline medium.Co_(3)C with more oxygen affinity promoted CoO(OH)intermediates,and the electrochemical surface oxidation to Co_(3)O_(4)was captured via in situ/operando electrochemical Raman probes,increasing the number of active sites for OER activity.MoC with more d-vacancies exhibits strong hydrogen binding,promoting HER kinetics,whereas Fe_(3)C and TiC with more defect states to trap charge carriers may hinder both OER and HER activities.The results show that the assembled membrane-less electrolyzer with Co_(3)C∥Co_(3)C and MoC∥MoC electrodes requires~2.01 and 1.99 V,respectively,to deliver a 10 mA cm−2 with excellent electrochemical and structural stability.In addition,the ascertained pulsed laser synthesis mechanism and unit-cell packing relations will open up sustainable pathways for obtaining highly stable electrocatalysts for electrolyzers.展开更多
The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen pro...The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen production technologies,anion exchange membrane water electrolyzer(AEMWE)has emerged as a next-generation technology known for its high hydrogen production efficiency and its ability to use non-metal catalysts.However,this technology faces significant challenges,particularly in terms of the membrane durability and low ionic conductivity.To address these challenges,research efforts have focused on developing membranes with a new backbone structure and anion exchange groups to enhance durability and ionic conductivity.Notably,the super-acid-catalyzed condensation(SACC)synthesis method stands out due to its user convenience,the ability to create high molecular weight(MW)polymers,and the use of oxygen-tolerant organic catalysts.Although the synthesis of anion exchange membranes(AEMs)using the SACC method began in 2015,and despite growing interest in this synthesis approach,there remains a scarcity of review papers focusing on AEMs synthesized using the SACC method.The review covers the basics of SACC synthesis,presents various polymers synthesized using this method,and summarizes the development of these polymers,particularly their building blocks including aryl,ketone,and anion exchange groups.We systematically describe the effects of changes in the molecular structure of each polymer component,conducted by various research groups,on the mechanical properties,conductivity,and operational stability of the membrane.This review will provide insights into the development of AEMs with superior performance and operational stability suitable for water electrolysis applications.展开更多
The rise in hydrogen production powered by renewable energy is driving the field toward the adoption of systems comprising multiple alkaline water electrolyzers.These setups present various operational modes:independe...The rise in hydrogen production powered by renewable energy is driving the field toward the adoption of systems comprising multiple alkaline water electrolyzers.These setups present various operational modes:independent operation and multi-electrolyzer parallelization,each with distinct advantages and challenges.This study introduces an innovative configuration that incorporates a mutual lye mixer among electrolyzers,establishing a weakly coupled system that combines the advantages of two modes.This approach enables efficient heat utilization for faster hot-startup and maintains heat conservation post-lye interconnection,while preserving the option for independent operation after decoupling.A specialized thermal exchange model is developed for this topology,according to the dynamics of the lye mixer.The study further details startup procedures and proposes optimized control strategies tailored to this structural design.Waste heat from the caustic fully heats up the multiple electrolyzers connected to the lye mixing system,enabling a rapid hot start to enhance the system’s ability to track renewable energy.A control strategy is established to reduce heat loss and increase startup speed,and the optimal valve openings of the diverter valve and the manifold valve are determined.Simulation results indicate a considerable enhancement in operational efficiency,marked by an 18.28%improvement in startup speed and a 6.11%reduction in startup energy consumption inmulti-electrolyzer cluster systems,particularlywhen the systems are synchronized with photovoltaic energy sources.The findings represent a significant stride toward efficient and sustainable hydrogen production,offering a promising path for large-scale integration of renewable energy.展开更多
Glucosinolates are important phytochemicals in Brassicaceae.We investigated the effect of CaCl_(2)-HCl electrolyzed water(CHEW)on glucosinolates biosynthesis in broccoli sprouts.The results showed that CHEW treatment ...Glucosinolates are important phytochemicals in Brassicaceae.We investigated the effect of CaCl_(2)-HCl electrolyzed water(CHEW)on glucosinolates biosynthesis in broccoli sprouts.The results showed that CHEW treatment significantly decreased reactive oxygen species(ROS)and malondialdeh yde(MDA)contents in broccoli sprouts.On the the 8^(th)day,compared to tap water treatment,the the total glucosinolate content of broccoli sprouts with CHEW treatment increased by 10.6%and calcium content was dramatically enhanced from 14.4 mg/g DW to 22.7 mg/g DW.Comparative transcriptome and metabolome analyses revealed that CHEW treatment activated ROS and calcium signaling transduction pathways in broccoli sprouts and they interacted through MAPK cascades.Besides,CHEW treatment not only promoted the biosynthesis of amino acids,but also enhanced the expression of structural genes in glucosinolate synthesis through transcription factors(MYBs,bHLHs,WRKYs,etc.).The results of this study provided new insights into the regulatory network of glucosinolates biosynthesis in broccoli sprouts under CHEW treatment.展开更多
The strength and durability of concrete will be significantly reduced at high volume of mineral admixture,and the poor early strength of concrete also still needs to be solved.In this investigation,a highly active alk...The strength and durability of concrete will be significantly reduced at high volume of mineral admixture,and the poor early strength of concrete also still needs to be solved.In this investigation,a highly active alkaline electrolyzed waters was used as mixing water to improve the early strength and enhance the durability of green concrete with high volume mineral admixture,the influences of alkaline electrolyzed water(AEW)on hydration activity of mineral admixture and durability of concrete were determined.The results showed that compared with natural tap water,AEW can accelerate early hydration process of cement in concrete and produce comparatively more hydrated products,leading to a 13.6%higher compressive strength than that of ordinary concrete at early age,but the improvement effect of AEW concrete was relatively reduced at long-term age.Meanwhile,the activity of mineral admixtures could be stimulated by AEW to some extent,the strength and durability performance of AEW concrete after double doping 25%slag and 25%fly ash can still reach the level of ordinary cement concrete without mineral admixtures.The SEM micromorphology of 7 d hydrated natural tap water cement paste was observed to be flaky and tabular,but the AEW cement pastes present obvious cluster and granulation phenomenon.The SEM microstructure of AEW concrete with mineral admixtures is more developed and denser than ordinary tap water concrete with mineral admixtures.Therefore,the AEW probably could realize the effective utilization of about 50%mineral admixture amount of concrete without strength loss,the cement production cost and associated CO_(2) emission reduced,which has a good economic and environmental benefit.展开更多
Developing an active and stable anode catalyst for the proton exchange membrane water electrolyzer(PEM-WE)is a critical objective to enhance the economic viability of green hydrogen technology.However,the expensive ir...Developing an active and stable anode catalyst for the proton exchange membrane water electrolyzer(PEM-WE)is a critical objective to enhance the economic viability of green hydrogen technology.However,the expensive iridium-based electrocatalyst remains the sole practical material with industrial-level stability for the acidic oxygen evolution reaction(OER)at the anode.Ruthenium-based catalysts have been proposed as more cost-effective alternatives with improved activity,though their stability requires enhancement.The current urgent goal is to reduce costs and noble metal loading of the OER catalyst while maintaining robust activity and stability.In this study,we design a Ru-based OER catalyst incorporating Pb as a supporting element.This electrocatalyst exhibits an OER overpotential of 201 mV at 10 mA·cm^(-2),simultaneously reducing Ru noble metal loading by~40%.Normalization of the electrochemically active surface area unveils improved intrinsic activity compared to the pristine RuO_(2) catalyst.During a practical stability test in a PEM-WE setup,our developed catalyst sustains stable performance over 300 h without notable degradation,underscoring its potential for future applications as a reliable anodic catalyst.展开更多
The establishment of biosafety system is of enormous importance to the livestock and poultry production in terms of mitigating the transmission of diseases and implementing regional prevention and control measures.How...The establishment of biosafety system is of enormous importance to the livestock and poultry production in terms of mitigating the transmission of diseases and implementing regional prevention and control measures.However,the current sterilization technology presents several drawbacks,including time-consuming procedures,chemical residues,and challenges in treating the sewage after rinsing.In this study,a novel cleaning and sterilization method that combines slightly acidic electrolyzed water and high pressure water-jet was developed.An orthogonal test was conducted to examine the correlation between high-pressure conditions and the various non-structural parameters on the efficacy of sterilization rate.In a field test,the effectiveness of the technology in cleaning pig transfer vehicles was evaluated by the total plate count and variations of community composition.The findings revealed that the combination of process parameters,including an available chlorine concentration of 200 mg/L,rinsing pressure of 170 bar,rinsing duration of 10 s,and residence time of 15 min,resulted in a removal rate of colony concentration on the surface of pig transfer vehicles of(96.50±0.91)%.Moreover,it was demonstrated to effectively inhibit a variety of pathogenic bacteria.The innovative cleaning system has the potential to replace traditional methods and reduces pollution while saving time and labor.It introduces a novel approach for sterilization of transportation in livestock and poultry farms as well as the biosafety construction of the animal husbandry.展开更多
The widespread application of polymer electrolyte membrane water electrolyzers(PEMWEs)remains a tough challenge to date,as they rely on the use of highly scarce iridium(Ir)with insufficient catalytic performance for t...The widespread application of polymer electrolyte membrane water electrolyzers(PEMWEs)remains a tough challenge to date,as they rely on the use of highly scarce iridium(Ir)with insufficient catalytic performance for the oxygen evolution reaction(OER).Therefore,exploring the degradation and activation mechanism of Ir-based catalysts during the OER and searching for highly efficient Ir-based catalysts are essential to achieve large-scale hydrogen production with PEMWEs.This minireview briefly describes the adsorbate evolution mechanism and lattice oxygen oxidation mechanism for Ir-based catalysts to complete the OER process.Then,the valence change of Ir during the OER is discussed to illustrate the origin of the favorable stability of Ir-based catalysts.After that,different modification strategies for IrO2,such as elemental doping,surface engineering,atom utilization enhancing,and support engineering,are summarized in the hopes of finding some commonalities for improving performance.Finally,the perspectives for the development of Ir-based OER catalysts in PEMWEs are presented.展开更多
Electrolyzed water(EW) can be produced by electrolysis of a dilute salt solution. Slightly acidic electrolyzed water(SAEW, p H 5.0–6.5) and neutral electrolyzed water(NEW, p H 6.5–8.5) are considered healthy and env...Electrolyzed water(EW) can be produced by electrolysis of a dilute salt solution. Slightly acidic electrolyzed water(SAEW, p H 5.0–6.5) and neutral electrolyzed water(NEW, p H 6.5–8.5) are considered healthy and environmentally friendly because no hazardous chemicals are added in its production, there is reduced corrosion of surfaces and it minimizes the potential for damage to animal and human health. Over the last decade, EW has become increasingly popular as an alternative disinfectant for decontamination in animal houses. However, there have been some issues related to EW that are not well known, including different mechanisms for generation of SAEW and NEW, and the antimicrobial mechanism of EW. This review covers the definitions of SAEW and NEW, different generation systems for SAEW and NEW, the antimicrobial mechanism of EW, and recent developments related to the application of SAEW and NEW in animal houses.展开更多
This study assessed the combined effect of slightly acidic electrolyzed water(SAEW)and slightly acidic electrolyzed water ice(SAEW-ice)on the quality of pomfrets over a period of 18 d of cold storage at 4°C.A pre...This study assessed the combined effect of slightly acidic electrolyzed water(SAEW)and slightly acidic electrolyzed water ice(SAEW-ice)on the quality of pomfrets over a period of 18 d of cold storage at 4°C.A presoak for 5 min in SAEW solution(22 mg/L)was used before the pomfrets were placed on SAEW-ice(pH:6.45;ORP:803 mV;ACC:18 mg/L);The changes in physicochemical properties(i.e.,pH,thiobarbituric acid,total volatile basic nitrogen and texture profile),microbial loads and sensory characteristics were all analyzed.Compared with the tap water(TW)group,the total bacterial counts of the SAEW group significantly decreased by 1.27 log10 CFU/g after immersion(p<0.05).The shelf life of the pomfrets was prolonged by 9 d by the combined treatment of SAEW and SAEW-ice during storage at 4℃.On the 18th day,the gumminess and chewiness values of the pomfrets in the SAEW+SAEW-ice group were 195 g and 3.97 mJ,respectively,which were significantly higher than those of the other groups(p<0.05).The results suggested that SAEW+SAEW-ice treatments have great potential as a novel method to maintain the quality and extend the shelf life of pomfrets during refrigerated storage.展开更多
Slightly acidic electrolyzed water(SAEW,pH 6.0-6.5)is an ideal and environmentally-friendly disinfectant,which was used to prevent and control bacterial infections on farms.This work aims to investigate the inactivati...Slightly acidic electrolyzed water(SAEW,pH 6.0-6.5)is an ideal and environmentally-friendly disinfectant,which was used to prevent and control bacterial infections on farms.This work aims to investigate the inactivation effectiveness of SAEW in inactivating microbes in a disinfection channel.The bactericidal efficiency of SAEW on equipment surfaces was compared to two commercial disinfectants,Kuei A bromide solution(KAS,5:1000 v/v)and Glutaraldehyde solution(GS,5:1000 v/v).The disinfection effectiveness of SAEW in inactivating Salmonella enteritidis(S.enteritidis)on equipment surfaces in the disinfection channel was evaluated,and a model was developed using multiple linear regression analysis.Results indicated that SAEW was significantly(p<0.05)more efficient than KAS and GS on kits and clothing in the disinfection channel at 1 min.The SAEW did not contribute as aggressively to respiratory difficulty as KAS and GS.Maximum reductions of 2.362 log10 CFU/cm^(2),2.613 log10 CFU/cm^(2) and 2.359 log10 CFU/cm^(2) for Salmonella enteritidis were obtained from clothing surfaces,iron materials,and kits treated with SAEW for 2.5 min at a chlorine concentration of 220 mg/L.Moreover,the established model had a good fit-quantified by the determination coefficient R^(2)(0.939)and a lack of fit test(p>0.05).In addition,available chlorine concentration(ACC)was an important factor than other factors,and the inactivation efficiency of Salmonella enteritidis sprayed by SAEW treatment was different between iron materials,kits and clothing surfaces(iron>kit>clothing).展开更多
Objective: To study the efficacy of electrolyzed oxidizing water ( EOW ) and hydrocolloid occlusive dressings in the acceleration of epithelialization in excised burn-wounds in rats.Methods: Each of the anesthetized S...Objective: To study the efficacy of electrolyzed oxidizing water ( EOW ) and hydrocolloid occlusive dressings in the acceleration of epithelialization in excised burn-wounds in rats.Methods: Each of the anesthetized Sprague-Dawley rats (n = 28) was subjected to a third-degree burn that covered approximately 10% of the total body surface area. Rats were assigned into four groups: Group Ⅰ ( no irrigation), Group Ⅱ (irrigation with physiologic saline), Group Ⅲ ( irrigation with EOW ) and Group Ⅳ ( hydrocolloid occlusive dressing after EOW irrigation). Wounds were observed macroscopically until complete epithelialization was present, then the epithelialized wounds were examined microscopically. Results: Healing of the burn wounds was the fastest in Group Ⅳ treated with hydrocolloid occlusive dressing together with EOW. Although extensive regenerative epidermis was seen in each Group, the proliferations of lymphocytes and macrophages associated with dense collagen deposition were more extensive in Group Ⅱ, Ⅲ and IV than in Group Ⅰ. These findings were particularly evident in Group Ⅲ and Ⅳ.Conclusions: Wound Healing may be accelerated by applying a hydrocolloid occlusive dressing on burn surfaces after they are cleaned with EOW.展开更多
Mixed solution of slightly acidic electrolyzed water(SAEW)and artificial seawater was used to investigate the disinfection potential of SAEW in artificial seawater.Inoculated Vibrio parahaemolyticus(suspended in 3%sod...Mixed solution of slightly acidic electrolyzed water(SAEW)and artificial seawater was used to investigate the disinfection potential of SAEW in artificial seawater.Inoculated Vibrio parahaemolyticus(suspended in 3%sodium chloride alkaline peptone water and 0.85%sodium chloride water,respectively)was subjected to different mixed-SAEW and SAEW immersion treatments(5-20 mg/L available chlorine concentration(ACC)).In the presence of organic matter,4.07 logCFU/mL significant reduction(p<0.05)was achieved after treating with 20 mg/L mixed-SAEW for 15 min.There was 5.13 logCFU/mL reduction after treating with 15 mg/L SAEW for 15 min.For V.parahaemolyticus suspended in 0.85%sodium chloride solution,it was undetected after 30 s SAEW treatment(5 mg/L ACC)or 120 s mixed-SAEW treatment(10 mg/L ACC).At a ratio of SAEW and artificial seawater at 1:15(V/V),SAEW could inactivate V.parahaemolyticus to undetectable level in artificial seawater in one minute,which was comparable with UV treatment of 10 W.The results indicated high sanitization potential of SAEW against V.parahaemolyticus in aquaculture seawater.展开更多
In the present study,the bactericidal efficacy of slightly acidic electrolyzed water(SAEW)against Listeria monocytogenes(L.monocytogenes)planktonic cells and biofilm on food-contact surfaces including stainless steel ...In the present study,the bactericidal efficacy of slightly acidic electrolyzed water(SAEW)against Listeria monocytogenes(L.monocytogenes)planktonic cells and biofilm on food-contact surfaces including stainless steel and glass was systematically evaluated.The results showed that SAEW(pH 5.09 and available chlorine concentration(ACC)of 60.33 mg/L)could kill L.monocytogenes on food-contact surfaces completely in 30 s,a disinfection efficacy equal to that of NaCIO solutions(pH 9.23 and ACC of 253.53 mg/L).The results showed that long exposure time and high ACC contributed to the enhancement of the disinfection efficacy of SAEW on L.monocytogenes on food-contact surfaces.Moreover,the log reduction of SAEW treatment presented an increasing tendency within the prolonging of treatment time when SAEW was used to remove the L.monocytogenes bioflm formed on stainless steel and glass surfaces,which suggested that SAEW could remove L.monocytogenes bio-film effectively and its disinfection efficacy is equal to(in the case of stainless steel)or higher than(in the case of glass)that of high-ACC NaCIO solutions.In addition,the results of the crystal violet staining and scanning electron microscopy also demonstrated that SAEW treatment could remove the L.monocytogenes biofilm on food-contact surfaces.展开更多
To improve the corrosion resistance of titanium(Ti)bipolar plate,titanium nitride(TiN)film was prepared on the surface of commercial TA1 pure titanium by magnetron reactive sputtering and pulse laser deposition(PLD)te...To improve the corrosion resistance of titanium(Ti)bipolar plate,titanium nitride(TiN)film was prepared on the surface of commercial TA1 pure titanium by magnetron reactive sputtering and pulse laser deposition(PLD)techniques,and the film prepared under different process parameters were evaluated.Results show that dense and complete TiN film can be obtained on TA1 surface under different preparation processes,and the corrosion current density of Ti substrate significantly increases.However,the composition of the film prepared by magnetron reactive sputtering is affected by the oxygen competition reaction,and its homogeneity is inferior to that of the film prepared by PLD.The comprehensive performance of the PLD-prepared film shows excellent characteristics in the terms of low corrosion current density(0.025μA·cm^(−2)),moderate corrosion overpotential(−0.106 V),and good hydrophobicity.展开更多
基金the National Natural Science Foundation of China(No.52125102)the National Key Research and Development Program of China(No.2021YFB4000101)Fundamental Research Funds for t he Central Universities(No.FRF-TP-2021-02C2)。
文摘Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)are promising devices for hydrogen production,given their high efficiency,rapid responsiveness,and compactness.Bipolar plates account for a relatively high percentage of the total cost and weight compared with other components of PEMWEs.Thus,optimization of their design may accelerate the promotion of PEMWEs.This paper reviews the advances in materials and flow-field design for bipolar plates.First,the working conditions of proton-exchange membrane fuel cells(PEMFCs)and PEMWEs are compared,including reaction direction,operating temperature,pressure,input/output,and potential.Then,the current research status of bipolar-plate substrates and surface coatings is summarized,and some typical channel-rib flow fields and porous flow fields are presented.Furthermore,the effects of materials on mass and heat transfer and the possibility of reducing corrosion by improving the flow field structure are explored.Finally,this review discusses the potential directions of the development of bipolar-plate design,including material fabrication,flow-field geometry optimization using threedimensional printing,and surface-coating composition optimization based on computational materials science.
基金financially supported by the National Natural Science Foundation of China(No.52074130)the Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality,Ministry of Education。
文摘Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm,electrodes,bipolar plates and end plates,etc.The existing industrial bipolar plate channel is concave-convex structure,which is manufactured by complicated and high-cost mold punching.This structure still results in uneven electrolyte flow and low current density in the electrolytic cell,further increasing in energy consumption and cost of AWE.Thereby,in this article,the electrochemical and flow model is firstly constructed,based on the existing industrial concave and convex flow channel structure of bipolar plate,to study the current density,electrolyte flow and bubble distribution in the electrolysis cell.The reliability of the model was verified by comparison with experimental data in literature.Among which,the electrochemical current density affects the bubble yield,on the other hand,the generated bubbles cover the electrode surface,affecting the active specific surface area and ohmic resistance,which in turn affects the electrochemical reaction.The result indicates that the flow velocity near the bottom of the concave ball approaches zero,while the flow velocity on the convex ball surface is significantly higher.Additionally,vortices are observed within the flow channel structure,leading to an uneven distribution of electrolyte.Next,modelling is used to optimize the bipolar plate structure of AWE by simulating the electrochemistry and fluid flow performances of four kinds of structures,namely,concave and convex,rhombus,wedge and expanded mesh,in the bipolar plate of alkaline water electrolyzer.The results show that the expanded mesh channel structure has the largest current density of 3330 A/m^(2)and electrolyte flow velocity of 0.507 m/s in the electrolytic cell.Under the same current density,the electrolytic cell with the expanded mesh runner structure has the smallest potential and energy consumption.This work provides a useful guide for the comprehensive understanding and optimization of channel structures,and a theoretical basis for the design of large-scale electrolyzer.
基金financially supported by the National Natural Science Foundation of China(U1664259)State Grid Corporation of China(No.SGTYHT/15-JS-191,PEMWE MEA Preparation and degradation mechanism)
文摘An effective oxygen evolution electrode with Ir0.6Sn0.4O2 was designed for proton exchange membrane(PEM)water electrolyzers.The anode catalyst layer exhibits a jagged structure with smaller particles and pores,which provide more active sites and mass transportation channels.The prepared IrSn electrode showed a cell voltage of 1.96 V at 2.0 A cm^-2 with Ir loading as low as 0.294 mg cm^-2.Furthermore,Ir Sn electrode with different anode catalyst loadings was investigated.The IrS n electrode indicates higher mass current and more stable cell voltage than the commercial Ir Black electrode at low loading.
基金National Natural Science Foundation of China(Nos.52071231,51722103)the Natural Science Foundation of Tianjin(No.19JCJQJC61900)。
文摘Anion exchange membrane(AEM)electrolysis is a promising membrane-based green hydrogen production technology.However,AEM electrolysis still remains in its infancy,and the performance of AEM electrolyzers is far behind that of well-developed alkaline and proton exchange membrane electrolyzers.Therefore,breaking through the technical barriers of AEM electrolyzers is critical.On the basis of the analysis of the electrochemical performance tested in a single cell,electrochemical impedance spectroscopy,and the number of active sites,we evaluated the main technical factors that affect AEM electrolyzers.These factors included catalyst layer manufacturing(e.g.,catalyst,carbon black,and anionic ionomer)loadings,membrane electrode assembly,and testing conditions(e.g.,the KOH concentration in the electrolyte,electrolyte feeding mode,and operating temperature).The underlying mechanisms of the effects of these factors on AEM electrolyzer performance were also revealed.The irreversible voltage loss in the AEM electrolyzer was concluded to be mainly associated with the kinetics of the electrode reaction and the transport of electrons,ions,and gas-phase products involved in electrolysis.Based on the study results,the performance and stability of AEM electrolyzers were significantly improved.
基金supported by the National Key R&D Program of China(2021YFA1500900,2020YFA0710000)the National Natural Science Foundation of China(22172047,22002039,21825201 and U19A2017)+3 种基金the Provincial Natural Science Foundation of Hunan(2021JJ30089,2016TP1009 and 2020JJ5045)the China Postdoctoral Science Foundation(2019M662759,2020M682541 and 2020M682549)the Shenzhen Science and Technology Program(JCYJ20210324122209025)the Changsha Municipal Natural Science Foundation(kq2107008 and kq2007009)。
文摘1.Introduction Hydrogen is an ideal energy carrier to tackle the energy crisis and greenhouse effect,because of its high energy density and low emission.The production,storage and transportation of hydrogen are key factors to the practical application of hydrogen energy.As the scientific and technological understanding of the electrochemical devices was advancing in the past few decades,water electrolyzers based on the proton exchange membrane (PEM) have attracted much focus for its huge potential on the production of hydrogen via water splitting.PEM electrolyzers use perfluorinated sulfonic acid (PFSA) based membranes as the electrolyte.
基金National Research Foundation of Korea,Grant/Award Numbers:2019H1D3A1A01071209,2021R1I1A1A01060380,2022R1A2C2010686,2022R1A4A3033528Korea Basic Science Institute,Grant/Award Numbers:2019R1A6C1010042,2021R1A6C103A427。
文摘We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed laser ablation of Co,Fe,Ti,and Mo metals in acetone.The interaction between carbon s-p-orbitals and metal d-orbitals causes a redistribution of valence structure through charge transfer,leading to the formation of surface defects as observed by X-ray photoelectron spectroscopy.These defects influence the evolved TMCs,making them effective for hydrogen and oxygen evolution reactions(HER and OER)in an alkaline medium.Co_(3)C with more oxygen affinity promoted CoO(OH)intermediates,and the electrochemical surface oxidation to Co_(3)O_(4)was captured via in situ/operando electrochemical Raman probes,increasing the number of active sites for OER activity.MoC with more d-vacancies exhibits strong hydrogen binding,promoting HER kinetics,whereas Fe_(3)C and TiC with more defect states to trap charge carriers may hinder both OER and HER activities.The results show that the assembled membrane-less electrolyzer with Co_(3)C∥Co_(3)C and MoC∥MoC electrodes requires~2.01 and 1.99 V,respectively,to deliver a 10 mA cm−2 with excellent electrochemical and structural stability.In addition,the ascertained pulsed laser synthesis mechanism and unit-cell packing relations will open up sustainable pathways for obtaining highly stable electrocatalysts for electrolyzers.
基金supported by the KRISS(Korea Research Institute of Standards and Science)MPI Lab.program。
文摘The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen production technologies,anion exchange membrane water electrolyzer(AEMWE)has emerged as a next-generation technology known for its high hydrogen production efficiency and its ability to use non-metal catalysts.However,this technology faces significant challenges,particularly in terms of the membrane durability and low ionic conductivity.To address these challenges,research efforts have focused on developing membranes with a new backbone structure and anion exchange groups to enhance durability and ionic conductivity.Notably,the super-acid-catalyzed condensation(SACC)synthesis method stands out due to its user convenience,the ability to create high molecular weight(MW)polymers,and the use of oxygen-tolerant organic catalysts.Although the synthesis of anion exchange membranes(AEMs)using the SACC method began in 2015,and despite growing interest in this synthesis approach,there remains a scarcity of review papers focusing on AEMs synthesized using the SACC method.The review covers the basics of SACC synthesis,presents various polymers synthesized using this method,and summarizes the development of these polymers,particularly their building blocks including aryl,ketone,and anion exchange groups.We systematically describe the effects of changes in the molecular structure of each polymer component,conducted by various research groups,on the mechanical properties,conductivity,and operational stability of the membrane.This review will provide insights into the development of AEMs with superior performance and operational stability suitable for water electrolysis applications.
基金supported by the Key Technology Research and Application Demonstration Project for Large-Scale Multi-Scenario Water Electrolysis Hydrogen Production(CTGTC/2023-LQ-06).
文摘The rise in hydrogen production powered by renewable energy is driving the field toward the adoption of systems comprising multiple alkaline water electrolyzers.These setups present various operational modes:independent operation and multi-electrolyzer parallelization,each with distinct advantages and challenges.This study introduces an innovative configuration that incorporates a mutual lye mixer among electrolyzers,establishing a weakly coupled system that combines the advantages of two modes.This approach enables efficient heat utilization for faster hot-startup and maintains heat conservation post-lye interconnection,while preserving the option for independent operation after decoupling.A specialized thermal exchange model is developed for this topology,according to the dynamics of the lye mixer.The study further details startup procedures and proposes optimized control strategies tailored to this structural design.Waste heat from the caustic fully heats up the multiple electrolyzers connected to the lye mixing system,enabling a rapid hot start to enhance the system’s ability to track renewable energy.A control strategy is established to reduce heat loss and increase startup speed,and the optimal valve openings of the diverter valve and the manifold valve are determined.Simulation results indicate a considerable enhancement in operational efficiency,marked by an 18.28%improvement in startup speed and a 6.11%reduction in startup energy consumption inmulti-electrolyzer cluster systems,particularlywhen the systems are synchronized with photovoltaic energy sources.The findings represent a significant stride toward efficient and sustainable hydrogen production,offering a promising path for large-scale integration of renewable energy.
基金supported by the National Natural Science Foundation of China(31972091)。
文摘Glucosinolates are important phytochemicals in Brassicaceae.We investigated the effect of CaCl_(2)-HCl electrolyzed water(CHEW)on glucosinolates biosynthesis in broccoli sprouts.The results showed that CHEW treatment significantly decreased reactive oxygen species(ROS)and malondialdeh yde(MDA)contents in broccoli sprouts.On the the 8^(th)day,compared to tap water treatment,the the total glucosinolate content of broccoli sprouts with CHEW treatment increased by 10.6%and calcium content was dramatically enhanced from 14.4 mg/g DW to 22.7 mg/g DW.Comparative transcriptome and metabolome analyses revealed that CHEW treatment activated ROS and calcium signaling transduction pathways in broccoli sprouts and they interacted through MAPK cascades.Besides,CHEW treatment not only promoted the biosynthesis of amino acids,but also enhanced the expression of structural genes in glucosinolate synthesis through transcription factors(MYBs,bHLHs,WRKYs,etc.).The results of this study provided new insights into the regulatory network of glucosinolates biosynthesis in broccoli sprouts under CHEW treatment.
基金funded by National Natural Science Foundation of China(Grant Nos.51808310,51878366)Natural Science Foundation of Shandong Province(Grant Nos.ZR2019PEE007,ZR2020ME036)High-level Scientific Research Foundation for the introduction of talent of Qingdao Agricultural University(Grant No.1118034).
文摘The strength and durability of concrete will be significantly reduced at high volume of mineral admixture,and the poor early strength of concrete also still needs to be solved.In this investigation,a highly active alkaline electrolyzed waters was used as mixing water to improve the early strength and enhance the durability of green concrete with high volume mineral admixture,the influences of alkaline electrolyzed water(AEW)on hydration activity of mineral admixture and durability of concrete were determined.The results showed that compared with natural tap water,AEW can accelerate early hydration process of cement in concrete and produce comparatively more hydrated products,leading to a 13.6%higher compressive strength than that of ordinary concrete at early age,but the improvement effect of AEW concrete was relatively reduced at long-term age.Meanwhile,the activity of mineral admixtures could be stimulated by AEW to some extent,the strength and durability performance of AEW concrete after double doping 25%slag and 25%fly ash can still reach the level of ordinary cement concrete without mineral admixtures.The SEM micromorphology of 7 d hydrated natural tap water cement paste was observed to be flaky and tabular,but the AEW cement pastes present obvious cluster and granulation phenomenon.The SEM microstructure of AEW concrete with mineral admixtures is more developed and denser than ordinary tap water concrete with mineral admixtures.Therefore,the AEW probably could realize the effective utilization of about 50%mineral admixture amount of concrete without strength loss,the cement production cost and associated CO_(2) emission reduced,which has a good economic and environmental benefit.
基金supported by the Robert A.Welch Foundation(No.C-2051-20230405)the David and Lucile Packard Foundation(No.2020-71371)the Alfred P.Sloan Foundation(No.FG-2021-15638).
文摘Developing an active and stable anode catalyst for the proton exchange membrane water electrolyzer(PEM-WE)is a critical objective to enhance the economic viability of green hydrogen technology.However,the expensive iridium-based electrocatalyst remains the sole practical material with industrial-level stability for the acidic oxygen evolution reaction(OER)at the anode.Ruthenium-based catalysts have been proposed as more cost-effective alternatives with improved activity,though their stability requires enhancement.The current urgent goal is to reduce costs and noble metal loading of the OER catalyst while maintaining robust activity and stability.In this study,we design a Ru-based OER catalyst incorporating Pb as a supporting element.This electrocatalyst exhibits an OER overpotential of 201 mV at 10 mA·cm^(-2),simultaneously reducing Ru noble metal loading by~40%.Normalization of the electrochemically active surface area unveils improved intrinsic activity compared to the pristine RuO_(2) catalyst.During a practical stability test in a PEM-WE setup,our developed catalyst sustains stable performance over 300 h without notable degradation,underscoring its potential for future applications as a reliable anodic catalyst.
基金support of this project by the Strategic Priority Research Program of the National Center of Technology Innovation for Pigs(Grant No.NCTIP-XD/B07).
文摘The establishment of biosafety system is of enormous importance to the livestock and poultry production in terms of mitigating the transmission of diseases and implementing regional prevention and control measures.However,the current sterilization technology presents several drawbacks,including time-consuming procedures,chemical residues,and challenges in treating the sewage after rinsing.In this study,a novel cleaning and sterilization method that combines slightly acidic electrolyzed water and high pressure water-jet was developed.An orthogonal test was conducted to examine the correlation between high-pressure conditions and the various non-structural parameters on the efficacy of sterilization rate.In a field test,the effectiveness of the technology in cleaning pig transfer vehicles was evaluated by the total plate count and variations of community composition.The findings revealed that the combination of process parameters,including an available chlorine concentration of 200 mg/L,rinsing pressure of 170 bar,rinsing duration of 10 s,and residence time of 15 min,resulted in a removal rate of colony concentration on the surface of pig transfer vehicles of(96.50±0.91)%.Moreover,it was demonstrated to effectively inhibit a variety of pathogenic bacteria.The innovative cleaning system has the potential to replace traditional methods and reduces pollution while saving time and labor.It introduces a novel approach for sterilization of transportation in livestock and poultry farms as well as the biosafety construction of the animal husbandry.
基金This work was financially supported by the National Natural Science Foundation of China(22122202,22072051,and 21972051).
文摘The widespread application of polymer electrolyte membrane water electrolyzers(PEMWEs)remains a tough challenge to date,as they rely on the use of highly scarce iridium(Ir)with insufficient catalytic performance for the oxygen evolution reaction(OER).Therefore,exploring the degradation and activation mechanism of Ir-based catalysts during the OER and searching for highly efficient Ir-based catalysts are essential to achieve large-scale hydrogen production with PEMWEs.This minireview briefly describes the adsorbate evolution mechanism and lattice oxygen oxidation mechanism for Ir-based catalysts to complete the OER process.Then,the valence change of Ir during the OER is discussed to illustrate the origin of the favorable stability of Ir-based catalysts.After that,different modification strategies for IrO2,such as elemental doping,surface engineering,atom utilization enhancing,and support engineering,are summarized in the hopes of finding some commonalities for improving performance.Finally,the perspectives for the development of Ir-based OER catalysts in PEMWEs are presented.
基金funded by the National Natural Science Foundation of China (30871957)Beijing Natural Science Foundation, China (6154029)China Agricultural Research System (CARS–41)
文摘Electrolyzed water(EW) can be produced by electrolysis of a dilute salt solution. Slightly acidic electrolyzed water(SAEW, p H 5.0–6.5) and neutral electrolyzed water(NEW, p H 6.5–8.5) are considered healthy and environmentally friendly because no hazardous chemicals are added in its production, there is reduced corrosion of surfaces and it minimizes the potential for damage to animal and human health. Over the last decade, EW has become increasingly popular as an alternative disinfectant for decontamination in animal houses. However, there have been some issues related to EW that are not well known, including different mechanisms for generation of SAEW and NEW, and the antimicrobial mechanism of EW. This review covers the definitions of SAEW and NEW, different generation systems for SAEW and NEW, the antimicrobial mechanism of EW, and recent developments related to the application of SAEW and NEW in animal houses.
基金This study was financially supported by the National Key Research and Development Program of China(Grant No.2018YFD0701001,Grant No.2017YFB0404000).Any opinions,findings,and conclusions expressed in this publication are those of the authors and do not necessarily reflect the views of Zhejiang University.
文摘This study assessed the combined effect of slightly acidic electrolyzed water(SAEW)and slightly acidic electrolyzed water ice(SAEW-ice)on the quality of pomfrets over a period of 18 d of cold storage at 4°C.A presoak for 5 min in SAEW solution(22 mg/L)was used before the pomfrets were placed on SAEW-ice(pH:6.45;ORP:803 mV;ACC:18 mg/L);The changes in physicochemical properties(i.e.,pH,thiobarbituric acid,total volatile basic nitrogen and texture profile),microbial loads and sensory characteristics were all analyzed.Compared with the tap water(TW)group,the total bacterial counts of the SAEW group significantly decreased by 1.27 log10 CFU/g after immersion(p<0.05).The shelf life of the pomfrets was prolonged by 9 d by the combined treatment of SAEW and SAEW-ice during storage at 4℃.On the 18th day,the gumminess and chewiness values of the pomfrets in the SAEW+SAEW-ice group were 195 g and 3.97 mJ,respectively,which were significantly higher than those of the other groups(p<0.05).The results suggested that SAEW+SAEW-ice treatments have great potential as a novel method to maintain the quality and extend the shelf life of pomfrets during refrigerated storage.
基金The author gratefully acknowledges the financial support from China Agricultural Research Systems(CARS-41)Southern plant-eating livestock microclimate regulation technology research(201303145)Science and Technology Plan Projects of Department of Education of Jiangxi Province(Grant No.:GJJ160401).The author also likes to acknowledge Zhao Lijie for assisting with the experiments.
文摘Slightly acidic electrolyzed water(SAEW,pH 6.0-6.5)is an ideal and environmentally-friendly disinfectant,which was used to prevent and control bacterial infections on farms.This work aims to investigate the inactivation effectiveness of SAEW in inactivating microbes in a disinfection channel.The bactericidal efficiency of SAEW on equipment surfaces was compared to two commercial disinfectants,Kuei A bromide solution(KAS,5:1000 v/v)and Glutaraldehyde solution(GS,5:1000 v/v).The disinfection effectiveness of SAEW in inactivating Salmonella enteritidis(S.enteritidis)on equipment surfaces in the disinfection channel was evaluated,and a model was developed using multiple linear regression analysis.Results indicated that SAEW was significantly(p<0.05)more efficient than KAS and GS on kits and clothing in the disinfection channel at 1 min.The SAEW did not contribute as aggressively to respiratory difficulty as KAS and GS.Maximum reductions of 2.362 log10 CFU/cm^(2),2.613 log10 CFU/cm^(2) and 2.359 log10 CFU/cm^(2) for Salmonella enteritidis were obtained from clothing surfaces,iron materials,and kits treated with SAEW for 2.5 min at a chlorine concentration of 220 mg/L.Moreover,the established model had a good fit-quantified by the determination coefficient R^(2)(0.939)and a lack of fit test(p>0.05).In addition,available chlorine concentration(ACC)was an important factor than other factors,and the inactivation efficiency of Salmonella enteritidis sprayed by SAEW treatment was different between iron materials,kits and clothing surfaces(iron>kit>clothing).
基金This study was supported by the Ministry of Education, Science,Sports and Culture of Japan(No.10470311).
文摘Objective: To study the efficacy of electrolyzed oxidizing water ( EOW ) and hydrocolloid occlusive dressings in the acceleration of epithelialization in excised burn-wounds in rats.Methods: Each of the anesthetized Sprague-Dawley rats (n = 28) was subjected to a third-degree burn that covered approximately 10% of the total body surface area. Rats were assigned into four groups: Group Ⅰ ( no irrigation), Group Ⅱ (irrigation with physiologic saline), Group Ⅲ ( irrigation with EOW ) and Group Ⅳ ( hydrocolloid occlusive dressing after EOW irrigation). Wounds were observed macroscopically until complete epithelialization was present, then the epithelialized wounds were examined microscopically. Results: Healing of the burn wounds was the fastest in Group Ⅳ treated with hydrocolloid occlusive dressing together with EOW. Although extensive regenerative epidermis was seen in each Group, the proliferations of lymphocytes and macrophages associated with dense collagen deposition were more extensive in Group Ⅱ, Ⅲ and IV than in Group Ⅰ. These findings were particularly evident in Group Ⅲ and Ⅳ.Conclusions: Wound Healing may be accelerated by applying a hydrocolloid occlusive dressing on burn surfaces after they are cleaned with EOW.
基金This research was financially supported by the National Key R&D Program of China(Project number:2018YFD0701001)the Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture,Ministry of Agriculture,P.R.China and the Shanghai Sailing Program(19YF1443500).
文摘Mixed solution of slightly acidic electrolyzed water(SAEW)and artificial seawater was used to investigate the disinfection potential of SAEW in artificial seawater.Inoculated Vibrio parahaemolyticus(suspended in 3%sodium chloride alkaline peptone water and 0.85%sodium chloride water,respectively)was subjected to different mixed-SAEW and SAEW immersion treatments(5-20 mg/L available chlorine concentration(ACC)).In the presence of organic matter,4.07 logCFU/mL significant reduction(p<0.05)was achieved after treating with 20 mg/L mixed-SAEW for 15 min.There was 5.13 logCFU/mL reduction after treating with 15 mg/L SAEW for 15 min.For V.parahaemolyticus suspended in 0.85%sodium chloride solution,it was undetected after 30 s SAEW treatment(5 mg/L ACC)or 120 s mixed-SAEW treatment(10 mg/L ACC).At a ratio of SAEW and artificial seawater at 1:15(V/V),SAEW could inactivate V.parahaemolyticus to undetectable level in artificial seawater in one minute,which was comparable with UV treatment of 10 W.The results indicated high sanitization potential of SAEW against V.parahaemolyticus in aquaculture seawater.
基金the Hebei Natural Science Foundation of China(No.C2018208085)the National Natural Science Foundation of China(No.31972170).
文摘In the present study,the bactericidal efficacy of slightly acidic electrolyzed water(SAEW)against Listeria monocytogenes(L.monocytogenes)planktonic cells and biofilm on food-contact surfaces including stainless steel and glass was systematically evaluated.The results showed that SAEW(pH 5.09 and available chlorine concentration(ACC)of 60.33 mg/L)could kill L.monocytogenes on food-contact surfaces completely in 30 s,a disinfection efficacy equal to that of NaCIO solutions(pH 9.23 and ACC of 253.53 mg/L).The results showed that long exposure time and high ACC contributed to the enhancement of the disinfection efficacy of SAEW on L.monocytogenes on food-contact surfaces.Moreover,the log reduction of SAEW treatment presented an increasing tendency within the prolonging of treatment time when SAEW was used to remove the L.monocytogenes bioflm formed on stainless steel and glass surfaces,which suggested that SAEW could remove L.monocytogenes bio-film effectively and its disinfection efficacy is equal to(in the case of stainless steel)or higher than(in the case of glass)that of high-ACC NaCIO solutions.In addition,the results of the crystal violet staining and scanning electron microscopy also demonstrated that SAEW treatment could remove the L.monocytogenes biofilm on food-contact surfaces.
基金National Key Research and Development Program of China(2022YFB4002100)。
文摘To improve the corrosion resistance of titanium(Ti)bipolar plate,titanium nitride(TiN)film was prepared on the surface of commercial TA1 pure titanium by magnetron reactive sputtering and pulse laser deposition(PLD)techniques,and the film prepared under different process parameters were evaluated.Results show that dense and complete TiN film can be obtained on TA1 surface under different preparation processes,and the corrosion current density of Ti substrate significantly increases.However,the composition of the film prepared by magnetron reactive sputtering is affected by the oxygen competition reaction,and its homogeneity is inferior to that of the film prepared by PLD.The comprehensive performance of the PLD-prepared film shows excellent characteristics in the terms of low corrosion current density(0.025μA·cm^(−2)),moderate corrosion overpotential(−0.106 V),and good hydrophobicity.