Qualitative and quantitative analysis of trace heavy metals in aqueous environment are rapidly assuming significance along with the rapid development of industry.In this paper,gold microelectrode array(MEA)plated with...Qualitative and quantitative analysis of trace heavy metals in aqueous environment are rapidly assuming significance along with the rapid development of industry.In this paper,gold microelectrode array(MEA)plated with mercury film was used for simultaneous voltammetric detection of zinc,cadmium,lead and copper ions in water.The electrochemical behavior and the actual surface area of the MEA were investigated by cyclic voltammetry in K_(3)[Fe(CN)_(6)].Electrochemical impedance spectrum(EIS)was utilized to examine the deposition of mercury on the electrode surface.Based on anodic stripping voltammetry,mercury filmAu MEA was applied to the detection of heavy metals in artificial analyte,where good calibrate linearity was obtained for cadmium,lead and copper ions,but with zinc exhibiting poor linearity.展开更多
The removal of Cd, Cu, Ni and Zn from dilute mine water by using several geological materials including pure limestone, sand, carbonaceous limestone and brecciated limestone was performed on a laboratory scale. The re...The removal of Cd, Cu, Ni and Zn from dilute mine water by using several geological materials including pure limestone, sand, carbonaceous limestone and brecciated limestone was performed on a laboratory scale. The results showed that to add geological materials in combination with sodium carbonate injection would notably enhance the efficiency of heavy metal removal to varying degrees. Pure limestone was found the best one among the four materials mentioned above for removing heavy metals from mine water. The removal efficiencies of pure limestone when it is ground as fine as 30–60 meshes are 58.6% for Cd, 100% for Cu, 47.8% for Ni, and 36.8% for Zn at 20℃. The optimum pH is about 8.9 to 9.1. The mechanism of higher effective removal, perhaps, is primarily due to co-precipitation under the control of calcite-related pH value. According to this research, Na2CO3 injection manners, including slug dosing and drip-wise, seemed to have little impact on the efficiency of heavy metal removal.展开更多
The study aimed at assessing the physiochemical characteristics of rainwater in Warri and it environ was investigated. Pb, Zn, Cd, Cu and Cr concentrations in rainwater from roof and non-roof sources were determined u...The study aimed at assessing the physiochemical characteristics of rainwater in Warri and it environ was investigated. Pb, Zn, Cd, Cu and Cr concentrations in rainwater from roof and non-roof sources were determined using Atomic Absorption Spectrophotometry. Three geospatial locations comprising Jakpa, Udu, and Ubeji were selected based on prevailing anthropogenic activities. The rainwater samples were systematically collected from (aluminum) roof and non-roof sources for the months of April, June, and August and October 2022, treated and analyzed in the laboratory for sixteen physicochemical parameters. Results were statistically analyzed using ANOVA, and T-test for the determination of the level of relationships and variations across geospatial locations. Significant correlations (r = 0.72) exist between Cr in rainwater from roof and non-roof sources. Implying point-source contaminations and may be emanating from the influence of roof materials. Furthermore, high concentrations of Cd and Pb in roof source above WHO standards were mostly in Jakpa and Ubeji. Calculated Health Risk Index (HRI) for children and adult is greater than 1. The results showed that most samples from the locations are considered not safe (HRI > 1) especially for Cd, which means that there are potential health risks consuming rainwater from Jakpa, Udu and Ubeji. Therefore, there is need for prompt sensitization program to dissuade people from directly drinking rainwater from these locations.展开更多
The complexation capacity for heavy metals (Cu, Cd, Pb) were determined by anodic stripping voltammetry in South China Sea, Hulun Lake and Wuliang Suhai. The conditional stability constants and complexation capacity i...The complexation capacity for heavy metals (Cu, Cd, Pb) were determined by anodic stripping voltammetry in South China Sea, Hulun Lake and Wuliang Suhai. The conditional stability constants and complexation capacity index were calculated. The data showed that the complexation capacity of the Hulun Lake was greater than that of seawater and Wuliang Suhai. The sequence of complexation capacity is C (CuL)> C (CdL)> C (PbL), the values are in concord with results of analysis on dissolved organic carbon. The conditional stability constants were in an opposite sequence: K (CuL)< K (CdL)< K (PbL). When log K are similar, the greater the complexation capacity, the greater the complexation capacity index.展开更多
In this paper,25 sampling points of overlying deposits in Tonglushan mining area,Daye City,Hubei Province,China were tested for heavy metal content to explore pollution characteristics,pollution sources and ecological...In this paper,25 sampling points of overlying deposits in Tonglushan mining area,Daye City,Hubei Province,China were tested for heavy metal content to explore pollution characteristics,pollution sources and ecological risks of heavy metals in sediments.A geo-accumulation index method was used to evaluate the degree of heavy metal pollution in the sediment.The mean sediment quality guideline quotient was used for evaluating the ecological risk level of heavy metal in the sediment.And a method of correlation analysis,clustering analysis,and principal component analysis was used for preliminary analysis on the source of heavy metal in the sediment.It was indicated that there was extremely heavy metal pollution in the sediment,among which Cd was extremely polluted,Cu strongly contaminated,Zn,As,and Hg moderately contaminated,and Pb,Cr,and Ni were slightly contaminated.It was also indicated by the mean sediment quality guideline-quotient result that there was a high ecological risk of heavy metals in the sediment,and 64%of the sample sites had extremely high hidden biotoxic effects.For distribution,the contamination of branches was worse than that of the main channel of Daye Dagang,and the deposition of each heavy metal was mainly influenced by the distance from this sample site to the sewage draining exit of a tailings pond.The source analysis showed that the heavy metals in the sediment come from pollution discharging of mining and beneficiation companies,tailings ponds,smelting companies,and transport vehicles.In the study area,due to the influence of heavy metal discharging from these sources,the ecotoxicity of heavy metals in the sediment was extremely high,and Cd was the most toxic pollutant.The research figured out the key restoration area and elements for ecological restoration in the sediment of the Tonglüshan mining area,which could be referenced by monitoring and governance of heavy metal pollution in the sediment of the polymetallic mining area.展开更多
In recent years, the problem of environmental pollution caused by microplastics has attracted widespread attention. This paper reviews the latest research progress in terms of the source, content and distribution char...In recent years, the problem of environmental pollution caused by microplastics has attracted widespread attention. This paper reviews the latest research progress in terms of the source, content and distribution characteristics, harm, and detection technology of soil microplastics by referring to the relevant literature on soil microplastics worldwide. It concludes that:(1) Existing studies worldwide have detected the presence of microplastics in soil, water, and atmosphere, and the use of agricultural films, sewage sludge,and other man-made activities are the main sources of microplastics in soil;(2) microplastics can adsorb heavy metals, persistent organic pollutants and antibiotics in soil, change the physical and chemical properties of soil. This will result in composite pollution and harm to the ecosystem;(3) microplastics in soil not only can destroy the activity of key soil microorganisms, but also enter the body of crops and soil animals, affecting normal growth of crops and soil animals, and further threaten human health;(4) at present, there is no unified operating standard for the sampling, processing, and detection process of microplastics. Analysis methods such as visual inspection, spectroscopy, and thermal analysis have both advantages and disadvantages, and emerging detection technologies require urgent development.Microplastics have become a new pollutant in soil and their distribution characteristics are closely related to human activities. They pollute the environment and threaten human health through the food chain.Although related research on soil microplastics has just begun, it will become the focus of research in the future.展开更多
The quantitative determination of heavy metals in aquatic products is of great importance for food security issues.Laser-induced breakdown spectroscopy(LIBS)has been used in a variety of foodstuff analysis,but is stil...The quantitative determination of heavy metals in aquatic products is of great importance for food security issues.Laser-induced breakdown spectroscopy(LIBS)has been used in a variety of foodstuff analysis,but is still limited by its low sensitivity when targeting trace heavy metals.In this work,we compare three sample enrichment methods,namely drying,carbonization,and ashing,for increasing detection sensitivity by LIBS analysis for Pb and Cr in oyster samples.The results demonstrate that carbonization can remove a significant amount of the contributions of organic elements C,H,N and O;meanwhile,the signals of the metallic elements such as Cu,Pb,Sr,Ca,Cr and Mg are enhanced by3–6 times after carbonization,and further enhanced by 5–9 times after ashing.Such enhancement is not only due to the more concentrated metallic elements in the sample compared to the dried ones,but also the unifying of the matter in carbonized and ashed samples from which higher plasma temperature and electron density are observed.This condition favors the detection of trace elements.According to the calibration curves with univariate and multivariate analysis,the ashing method is considered to be the best choice.The limits of detection of the ashing method are 0.52 mg kg-1 for Pb and0.08 mg kg-1 for Cr,which can detect the presence of heavy metals in the oysters exceeding the maximum limits of Pb and Cr required by the Chinese national standard.This method provides a promising application for the heavy metal contamination monitoring in the aquatic product industry.展开更多
Through the use of general sampling and measurement by ^(137)Cs dating,problems regarding the absence of monitoring data can easily be resolved.Further,weighted values need to be determined while Environment Quality C...Through the use of general sampling and measurement by ^(137)Cs dating,problems regarding the absence of monitoring data can easily be resolved.Further,weighted values need to be determined while Environment Quality Comprehensive Index(EQCI)is commonly used as applied in environmental quality comprehensive evaluation.In order to overcome the subjectivity in determining weights,the modified Analytical Hierarchy Process(AHP)method was designed.The modified AHP method involved the following key procedures:First,the parameters y_(i1) and y_(i2) were calculated based on the monitoring data;second,the factors were put in order according to the symbol and value of y_(i1) and y_(i2);third,the continuous odd integers,which represented the importance of factors,were given to factors according to their seating order;and,fourth,the factor weights were determined from the pair-wise comparison matrix calculated by the ratio of the given odd integers.Therefore,the weights were completely based on the monitoring data.In the present study,the comprehensive quality of sediments in five sections of Lake Dianchi were evaluated and the results indicated that the current contamination of sediments in each lake section is much more serious than at any other time in history.展开更多
基金This work has been supported by grants from the National Basic Research Program of China(973 program),Grant No.2009CB320303.
文摘Qualitative and quantitative analysis of trace heavy metals in aqueous environment are rapidly assuming significance along with the rapid development of industry.In this paper,gold microelectrode array(MEA)plated with mercury film was used for simultaneous voltammetric detection of zinc,cadmium,lead and copper ions in water.The electrochemical behavior and the actual surface area of the MEA were investigated by cyclic voltammetry in K_(3)[Fe(CN)_(6)].Electrochemical impedance spectrum(EIS)was utilized to examine the deposition of mercury on the electrode surface.Based on anodic stripping voltammetry,mercury filmAu MEA was applied to the detection of heavy metals in artificial analyte,where good calibrate linearity was obtained for cadmium,lead and copper ions,but with zinc exhibiting poor linearity.
基金granted by the Science Foundation of China Postdoctors (No. 20070420214)the Natural Science Foundation of Shaanxi Province (No. SJ08D03)
文摘The removal of Cd, Cu, Ni and Zn from dilute mine water by using several geological materials including pure limestone, sand, carbonaceous limestone and brecciated limestone was performed on a laboratory scale. The results showed that to add geological materials in combination with sodium carbonate injection would notably enhance the efficiency of heavy metal removal to varying degrees. Pure limestone was found the best one among the four materials mentioned above for removing heavy metals from mine water. The removal efficiencies of pure limestone when it is ground as fine as 30–60 meshes are 58.6% for Cd, 100% for Cu, 47.8% for Ni, and 36.8% for Zn at 20℃. The optimum pH is about 8.9 to 9.1. The mechanism of higher effective removal, perhaps, is primarily due to co-precipitation under the control of calcite-related pH value. According to this research, Na2CO3 injection manners, including slug dosing and drip-wise, seemed to have little impact on the efficiency of heavy metal removal.
文摘The study aimed at assessing the physiochemical characteristics of rainwater in Warri and it environ was investigated. Pb, Zn, Cd, Cu and Cr concentrations in rainwater from roof and non-roof sources were determined using Atomic Absorption Spectrophotometry. Three geospatial locations comprising Jakpa, Udu, and Ubeji were selected based on prevailing anthropogenic activities. The rainwater samples were systematically collected from (aluminum) roof and non-roof sources for the months of April, June, and August and October 2022, treated and analyzed in the laboratory for sixteen physicochemical parameters. Results were statistically analyzed using ANOVA, and T-test for the determination of the level of relationships and variations across geospatial locations. Significant correlations (r = 0.72) exist between Cr in rainwater from roof and non-roof sources. Implying point-source contaminations and may be emanating from the influence of roof materials. Furthermore, high concentrations of Cd and Pb in roof source above WHO standards were mostly in Jakpa and Ubeji. Calculated Health Risk Index (HRI) for children and adult is greater than 1. The results showed that most samples from the locations are considered not safe (HRI > 1) especially for Cd, which means that there are potential health risks consuming rainwater from Jakpa, Udu and Ubeji. Therefore, there is need for prompt sensitization program to dissuade people from directly drinking rainwater from these locations.
文摘The complexation capacity for heavy metals (Cu, Cd, Pb) were determined by anodic stripping voltammetry in South China Sea, Hulun Lake and Wuliang Suhai. The conditional stability constants and complexation capacity index were calculated. The data showed that the complexation capacity of the Hulun Lake was greater than that of seawater and Wuliang Suhai. The sequence of complexation capacity is C (CuL)> C (CdL)> C (PbL), the values are in concord with results of analysis on dissolved organic carbon. The conditional stability constants were in an opposite sequence: K (CuL)< K (CdL)< K (PbL). When log K are similar, the greater the complexation capacity, the greater the complexation capacity index.
基金jointly supported by the Gansu Provincial Natural Resources Science and Technology Project of the Key Laboratory of Strategic Mineral Resources of the Upper Yellow River,Ministry of Natural Resources(YSJD2022-16)the survey project initiated by the China Geological Survey(DD20211347).
文摘In this paper,25 sampling points of overlying deposits in Tonglushan mining area,Daye City,Hubei Province,China were tested for heavy metal content to explore pollution characteristics,pollution sources and ecological risks of heavy metals in sediments.A geo-accumulation index method was used to evaluate the degree of heavy metal pollution in the sediment.The mean sediment quality guideline quotient was used for evaluating the ecological risk level of heavy metal in the sediment.And a method of correlation analysis,clustering analysis,and principal component analysis was used for preliminary analysis on the source of heavy metal in the sediment.It was indicated that there was extremely heavy metal pollution in the sediment,among which Cd was extremely polluted,Cu strongly contaminated,Zn,As,and Hg moderately contaminated,and Pb,Cr,and Ni were slightly contaminated.It was also indicated by the mean sediment quality guideline-quotient result that there was a high ecological risk of heavy metals in the sediment,and 64%of the sample sites had extremely high hidden biotoxic effects.For distribution,the contamination of branches was worse than that of the main channel of Daye Dagang,and the deposition of each heavy metal was mainly influenced by the distance from this sample site to the sewage draining exit of a tailings pond.The source analysis showed that the heavy metals in the sediment come from pollution discharging of mining and beneficiation companies,tailings ponds,smelting companies,and transport vehicles.In the study area,due to the influence of heavy metal discharging from these sources,the ecotoxicity of heavy metals in the sediment was extremely high,and Cd was the most toxic pollutant.The research figured out the key restoration area and elements for ecological restoration in the sediment of the Tonglüshan mining area,which could be referenced by monitoring and governance of heavy metal pollution in the sediment of the polymetallic mining area.
基金jointly supported by the project of China Geological Survey (DD20211574)Guangdong Geological Exploration and Urban Geology Project (2023–25)Public Welfare Geological Survey Project of Shaanxi Geological Survey Institute (202201)。
文摘In recent years, the problem of environmental pollution caused by microplastics has attracted widespread attention. This paper reviews the latest research progress in terms of the source, content and distribution characteristics, harm, and detection technology of soil microplastics by referring to the relevant literature on soil microplastics worldwide. It concludes that:(1) Existing studies worldwide have detected the presence of microplastics in soil, water, and atmosphere, and the use of agricultural films, sewage sludge,and other man-made activities are the main sources of microplastics in soil;(2) microplastics can adsorb heavy metals, persistent organic pollutants and antibiotics in soil, change the physical and chemical properties of soil. This will result in composite pollution and harm to the ecosystem;(3) microplastics in soil not only can destroy the activity of key soil microorganisms, but also enter the body of crops and soil animals, affecting normal growth of crops and soil animals, and further threaten human health;(4) at present, there is no unified operating standard for the sampling, processing, and detection process of microplastics. Analysis methods such as visual inspection, spectroscopy, and thermal analysis have both advantages and disadvantages, and emerging detection technologies require urgent development.Microplastics have become a new pollutant in soil and their distribution characteristics are closely related to human activities. They pollute the environment and threaten human health through the food chain.Although related research on soil microplastics has just begun, it will become the focus of research in the future.
基金supported by the National Key Research and Development Program of China(No.2019YFD0901701)National Natural Science Foundation of China(Nos.12174359and 61975190)Provincial Key Research and Development Program of Shandong,China(No.2019GHZ010)。
文摘The quantitative determination of heavy metals in aquatic products is of great importance for food security issues.Laser-induced breakdown spectroscopy(LIBS)has been used in a variety of foodstuff analysis,but is still limited by its low sensitivity when targeting trace heavy metals.In this work,we compare three sample enrichment methods,namely drying,carbonization,and ashing,for increasing detection sensitivity by LIBS analysis for Pb and Cr in oyster samples.The results demonstrate that carbonization can remove a significant amount of the contributions of organic elements C,H,N and O;meanwhile,the signals of the metallic elements such as Cu,Pb,Sr,Ca,Cr and Mg are enhanced by3–6 times after carbonization,and further enhanced by 5–9 times after ashing.Such enhancement is not only due to the more concentrated metallic elements in the sample compared to the dried ones,but also the unifying of the matter in carbonized and ashed samples from which higher plasma temperature and electron density are observed.This condition favors the detection of trace elements.According to the calibration curves with univariate and multivariate analysis,the ashing method is considered to be the best choice.The limits of detection of the ashing method are 0.52 mg kg-1 for Pb and0.08 mg kg-1 for Cr,which can detect the presence of heavy metals in the oysters exceeding the maximum limits of Pb and Cr required by the Chinese national standard.This method provides a promising application for the heavy metal contamination monitoring in the aquatic product industry.
文摘应用全光谱测量水体化学需氧量(chemical oxygen demand,COD)、硝酸盐氮(NO_(3)-N)浓度等水环境质量指标容易受水质环境影响,检测模型与特征波长一直是全光谱检测推广关注重点。该文提出一种基于遗传算法-径向基神经网络(genetic algorithm-radial basis function neural network,GA-RBFNN)全光谱水体COD与NO_(3)-N浓度检测方法,鉴于GA搜索能力强、随机性高的特点,对预处理后全光谱吸收数据应用GA进行特征波长选取,以RBFNN神经网络留K法训练过程中平均决定系数作为适应度函数,输出最优特征波长与RBFNN神经网络参数进行部署,从而实现水体COD、NO_(3)-N浓度准确测量。最后,开展GA-RBFNN、偏最小二乘(partial least squares,PLS)、GA-PLS、RBFNN四种模型对160组水样的COD、NO_(3)-N浓度检测实验,结果表明GA-RBFNN模型对COD、NO_(3)-N检测平均决定系数、最大误差分别为0.9964、0.9950和3.9%、4.9%,均优于其他模型,方法具有重要推广价值。
基金This work was supported by the State Key Laboratory of Soil sustainable Agriculture,Institute of Soil Sciences,Chinese Academy of Sciences(Grant No.5022505)the National Natural Science Foundation of China(Grant No.40771186)。
文摘Through the use of general sampling and measurement by ^(137)Cs dating,problems regarding the absence of monitoring data can easily be resolved.Further,weighted values need to be determined while Environment Quality Comprehensive Index(EQCI)is commonly used as applied in environmental quality comprehensive evaluation.In order to overcome the subjectivity in determining weights,the modified Analytical Hierarchy Process(AHP)method was designed.The modified AHP method involved the following key procedures:First,the parameters y_(i1) and y_(i2) were calculated based on the monitoring data;second,the factors were put in order according to the symbol and value of y_(i1) and y_(i2);third,the continuous odd integers,which represented the importance of factors,were given to factors according to their seating order;and,fourth,the factor weights were determined from the pair-wise comparison matrix calculated by the ratio of the given odd integers.Therefore,the weights were completely based on the monitoring data.In the present study,the comprehensive quality of sediments in five sections of Lake Dianchi were evaluated and the results indicated that the current contamination of sediments in each lake section is much more serious than at any other time in history.