The authors demonstrate the importance of the simulation of the water quantity exchange between river water and groundwater to a better understanding of the hydrologic relations between a river and nearby aquifer wher...The authors demonstrate the importance of the simulation of the water quantity exchange between river water and groundwater to a better understanding of the hydrologic relations between a river and nearby aquifer where groundwater is pumped extensively but only seasonally. And MODFLOW is used to design the stream aquifer model in which the pumpage of more than 1000 wells was simulated. The river gaining and river losing processes were analyzed. Simulation results suggest that continuation of over extraction of groundwater will gradually increase the depletion volume in the river year after year and more depletion will occur in later years. The exchange manner between groundwater and the Platte River differs from place to place. The Platte River loses water to the adjacent aquifer in the west part of the study area, and gains water from the adjacent aquifer in the east part of the study area.展开更多
Due to the high heterogeneity and complexity of water flow movement for multiple karst water-bearing mediums,the evaluation,effective development,and utilization of karst water resources are significantly limited.Matr...Due to the high heterogeneity and complexity of water flow movement for multiple karst water-bearing mediums,the evaluation,effective development,and utilization of karst water resources are significantly limited.Matrix flow is usually laminar,whereas conduit flow is usually turbulent.The driving mechanisms of water exchange that occur between the karst conduit and its adjacent matrix are not well understood.This paper investigates the hydrodynamic characteristics and the mechanism of flow exchange in dual water-bearing mediums(conduit and matrix)of karst aquifers through laboratory experimentation and numerical simulation.A karst aquifer consisting of a matrix network and a conduit was proposed,and the relationship between the water exchange flux and hydraulic head differences generated from the laboratory experiments was analyzed.Two modes of experimental tests were performed with different fixed water level boundaries in the laboratory karst aquifer.The results indicate that the water exchange capacity was proportional to the square root of hydraulic head differences.The linear exchange term in the conduit flow process(CFP)source program was modified according to experimental results.The modified CFP and the original CFP model experimental data results were compared,and it was found that the modified CFP model had better fitting effects.These results showed that the water exchange mechanism between conduit and matrix is very important for solid-liquid interface reaction,water resource evaluation,and understanding of karst hydrodynamic behavior.展开更多
Based on the first linearized Boussincsq equation, the analytical solution of the transient groundwater model, which is used for describing phreatic flow in a semiinfinite aquifer bounded by a linear stream and subjec...Based on the first linearized Boussincsq equation, the analytical solution of the transient groundwater model, which is used for describing phreatic flow in a semiinfinite aquifer bounded by a linear stream and subjected to time-dependent vertical seepage, is derived out by Laplace transform and the convolution integral. According to the mathematical characteristics of the solution, different methods for estimating aquifer parameters are constructed to satisfy different hydrological conditions. Then, tile equation for estimating water exchange between stream and aquifer is proposed, and a recursion equation or estimating the intensity of phreatic evaporation is also proposed. A phreatic aquifer stream system located in Huaibei Plain, Anhui Province, China, is taken as an example to demonstrate tile estimation process of the methods stated herein.展开更多
基金UnitedStateGeologicalSurveyGrant(No.1 4 34 HQ 96 GR 0 2 683)
文摘The authors demonstrate the importance of the simulation of the water quantity exchange between river water and groundwater to a better understanding of the hydrologic relations between a river and nearby aquifer where groundwater is pumped extensively but only seasonally. And MODFLOW is used to design the stream aquifer model in which the pumpage of more than 1000 wells was simulated. The river gaining and river losing processes were analyzed. Simulation results suggest that continuation of over extraction of groundwater will gradually increase the depletion volume in the river year after year and more depletion will occur in later years. The exchange manner between groundwater and the Platte River differs from place to place. The Platte River loses water to the adjacent aquifer in the west part of the study area, and gains water from the adjacent aquifer in the east part of the study area.
基金funded by the Guangxi Natural Science Foundation(2018JJA150153)China Geological Survey Research Fund(JYYWF20180402)the project of China Geological Survey(DD20190342)。
文摘Due to the high heterogeneity and complexity of water flow movement for multiple karst water-bearing mediums,the evaluation,effective development,and utilization of karst water resources are significantly limited.Matrix flow is usually laminar,whereas conduit flow is usually turbulent.The driving mechanisms of water exchange that occur between the karst conduit and its adjacent matrix are not well understood.This paper investigates the hydrodynamic characteristics and the mechanism of flow exchange in dual water-bearing mediums(conduit and matrix)of karst aquifers through laboratory experimentation and numerical simulation.A karst aquifer consisting of a matrix network and a conduit was proposed,and the relationship between the water exchange flux and hydraulic head differences generated from the laboratory experiments was analyzed.Two modes of experimental tests were performed with different fixed water level boundaries in the laboratory karst aquifer.The results indicate that the water exchange capacity was proportional to the square root of hydraulic head differences.The linear exchange term in the conduit flow process(CFP)source program was modified according to experimental results.The modified CFP and the original CFP model experimental data results were compared,and it was found that the modified CFP model had better fitting effects.These results showed that the water exchange mechanism between conduit and matrix is very important for solid-liquid interface reaction,water resource evaluation,and understanding of karst hydrodynamic behavior.
基金National Natural Science Foundation of China(No.40474065)the National TCM Project in the 11th Five-Year Plan Period of China(No.2006BAB01B01)
文摘Based on the first linearized Boussincsq equation, the analytical solution of the transient groundwater model, which is used for describing phreatic flow in a semiinfinite aquifer bounded by a linear stream and subjected to time-dependent vertical seepage, is derived out by Laplace transform and the convolution integral. According to the mathematical characteristics of the solution, different methods for estimating aquifer parameters are constructed to satisfy different hydrological conditions. Then, tile equation for estimating water exchange between stream and aquifer is proposed, and a recursion equation or estimating the intensity of phreatic evaporation is also proposed. A phreatic aquifer stream system located in Huaibei Plain, Anhui Province, China, is taken as an example to demonstrate tile estimation process of the methods stated herein.