The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequentl...The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequently elucidated. Then, a numerical approach of sensitivity analysis is adopted to quantify their corresponding dominance degree among the similarity parameters. In this way, we may finally identify major scaling law in different parameter range and demonstrate the respective effects of viscosity, permeability and injection rate.展开更多
For the ultra-high water-cut reservoirs,after long-term water injection exploitation,the physical properties of the reservoir change and the heterogeneity of the reservoir becomes increasingly severe,which further agg...For the ultra-high water-cut reservoirs,after long-term water injection exploitation,the physical properties of the reservoir change and the heterogeneity of the reservoir becomes increasingly severe,which further aggravates the spatial difference of the flow field.In this study,the displacement experiments were employed to investigate the variations in core permeability,porosity,and relative permeability after a large amount of water injection.A relative permeability endpoint model was proposed by utilizing the alternating conditional expectation(ACE)transformation to describe the variation in relative permeability based on the experimental data.Based on the time dependent models for permeability and relative permeability,the traditional oil-water two-phase model was improved and discretized using the mimetic finite difference method(MFD).The two cases were launched to confirm the validation of the proposed model.The impact of time-varying physical features on reservoir production performance was studied in a real water flooding reservoir.The experimental results indicate that the overall relative permeability curve shifts to the right as water injection increases.This shift corresponds to a transition towards a more hydrophilic wettability and a decrease in residual oil saturation.The endpoint model demonstrates excellent accuracy and can be applied to time-varying simulations of reservoir physics.The impact of variations in permeability and relative permeability on the reservoir production performance yields two distinct outcomes.The time-varying permeability of the reservoir results in intensified water channeling and poor development effects.On the other hand,the time-varying relative permeability enhances the oil phase seepage capacity,facilitating oil displacement.The comprehensive time-varying behavior is the result of the combined influence of these two parameters,which closely resemble the actual conditions observed in oil field exploitation.The time-varying simulation technique of reservoir physical properties proposed in this paper can continuously and stably characterize the dynamic changes of reservoir physical properties during water drive development.This approach ensures the reliability of the simulation results regarding residual oil distribution.展开更多
Layer regrouping is to divide all the layers into several sets of production series according to the physical properties and recovery percent of layers at high water-cut stage, which is an important technique to impro...Layer regrouping is to divide all the layers into several sets of production series according to the physical properties and recovery percent of layers at high water-cut stage, which is an important technique to improve oil recovery for high water-cut multilayered reservoirs. Dif- ferent regroup scenarios may lead to different production performances. Based on unstable oil-water flow theory, a multilayer commingled reservoir simulator is established by modifying the production split method. Taking into account the differences of layer properties, including per- meability, oil viscosity, and remaining oil saturation, the pseudo flow resistance contrast is proposed to serve as a characteristic index of layer regrouping for high water-cut multilayered reservoirs. The production indices of multi- layered reservoirs with different pseudo flow resistances are predicted with the established model in which the data are taken from the Shengtuo Oilfield. Simulation results show that the pseudo flow resistance contrast should be less than 4 when the layer regrouping is implemented. The K-means clustering method, which is based on the objec- tive function, is used to automatically carry out the layer regrouping process according to pseudo flow resistances. The research result is applied to the IV-VI sand groups of the second member of the Shahejie Formation in the Shengtuo Oilfield, a favorable development performance is obtained, and the oil recovery is enhanced by 6.08 %.展开更多
The rapid changing near source, multi-stream depositional environment of conglomerate reservoirs leads to severe heterogeneity, complex lithology and physical properties, and large changes of oil layer resistivity. Qu...The rapid changing near source, multi-stream depositional environment of conglomerate reservoirs leads to severe heterogeneity, complex lithology and physical properties, and large changes of oil layer resistivity. Quantitative evaluation of water-flooded layers has become an important but difficult focus for secondary development of oilfields. In this paper, based on the analysis of current problems in quantitative evaluation of water-flooded layers, the Kexia Group conglomerate reservoir of the Sixth District in the Karamay Oilfield was studied. Eight types of conglomerate reservoir lithology were identified effectively by a data mining method combined with the data from sealed coring wells, and then a multi-parameter model for quantitative evaluation of the water-flooded layers of the main oil-bearing lithology was developed. Water production rate, oil saturation and oil productivity index were selected as the characteristic parameters for quantitative evaluation of water-flooded layers of conglomerate reservoirs. Finally, quantitative evaluation criteria and identification rules for water-flooded layers of main oil-bearing lithology formed by integration of the three characteristic parameters of water-flooded layer and undisturbed formation resistivity. This method has been used in evaluation of the water-flooded layers of a conglomerate reservoir in the Karamay Oilfield and achieved good results, improving the interpretation accuracy and compliance rate. It will provide technical support for avoiding perforation of high water-bearing layers and for adjustment of developmental programs.展开更多
Oilfield A is a fractured buried hill reservoir in Bohai bay of China. In order to solve the difficult problem of water flooding timing and method in oilfield. Considering the characteristics of the buried hill fractu...Oilfield A is a fractured buried hill reservoir in Bohai bay of China. In order to solve the difficult problem of water flooding timing and method in oilfield. Considering the characteristics of the buried hill fractures with stress sensitivity and strong heterogeneity, the ECLIPSE software was used in the research, and a three-dimensional injection-production numerical model for horizontal wells in buried hill reservoirs is established. According to the main research factors in water flooding, a series of water flooding schemes are designed, and the optimization of water flooding timing, oil recovery rate and water flooding mode in buried hill reservoirs were carried out. The results show that the optimum pressure level of fractured reservoir is about 70% of the original reservoir pressure. The optimal water flooding method is the conventional water flooding in the initial stage, when the water cut reaches 80%, it is converted into periodic water flooding. The oil recovery is the highest when the water injection period is 4 months. Field tests show that conventional water flooding is carried out in the initial stage of the oilfield A when the pressure is reduced to 70% of the original. Periodic water flooding is carried out when water cut is 80%. Good development results had been achieved in the 10 years since oilfield A was put into production. The average productivity of single well reached 300 m3/d in the initial stage, at present, the water cut is 60%, and the recovery degree is 18.5%, which is better than that of similar oilfields. This technology improves the water flooding effect of blocky bottom water fractured dual media reservoirs in metamorphic buried hills, and provides a reference for the development of similar reservoirs.展开更多
In order to understand the water-flooding characteristics of different fracture systems in metamorphic rock buried hill reservoirs and the mechanism of improving water-flooding development effect, a three-dimensional ...In order to understand the water-flooding characteristics of different fracture systems in metamorphic rock buried hill reservoirs and the mechanism of improving water-flooding development effect, a three-dimensional physical model of fractured reservoirs is established according to the similarity criterion based on the prototype of metamorphic buried hill reservoirs in JZ Oilfield in Bohai Bay Basin. Combined with the fractured reservoir characteristics of JZ Oilfield, the water displacement characteristics of the top-bottom staggered injection-production well pattern in different fracture network mode and different fracture development degree of buried hill reservoir are studied. The experimental results show that: 1) the more serious the fracture system irregularity is, the shorter the water-free oil production period is and the lower the water-free oil recovery is. After water breakthrough of production wells, the water cut rises faster, and the effect of water flooding development is worse;2) under the condition of non-uniform fracture development, the development effect of the bottom fracture undeveloped is better than that of the middle fracture undeveloped. Water injection wells are deployed in areas with relatively few fractures, while oil wells are deployed in fractured areas with higher oil recovery and better development effect.展开更多
Based on the similarity criterion, volcanic rock samples were taken from outcrops to make experimental models. Water flooding experiments of five-spot well pattern, nine-spot well pattern, five-spot to nine-spot well ...Based on the similarity criterion, volcanic rock samples were taken from outcrops to make experimental models. Water flooding experiments of five-spot well pattern, nine-spot well pattern, five-spot to nine-spot well pattern, the relationship between relative well and fracture positions, and injection rate in dissolution vug-cave reservoirs with/without fractures were carried out to analyze variation regularities of development indexes, find out development characteristics of water flooding with different well patterns and sort out the optimal water flooding development mode. For dissolution vug-cave reservoirs without fractures, five-spot well pattern waterflooding has very small sweeping area, serious water channeling and low oil recovery. When the well pattern was adjusted from five-spot to nine-spot well pattern, oil recovery could be largely improved, but the corner well far from the injector is little affected. In dissolution vug-cave reservoirs with fractures, when the injector and producer are not connected by fractures, the fractures could effectively connect the poorly linked vugs to improve the development effect of water flooding. Whether there are fractures or not in dissolution vug-cave reservoirs, the development effect of nine-spot well-pattern is much better than that of five-spot well pattern and five-spot to nine-spot well pattern, this is more evident when there are fractures, and the edge well has better development indexes than corner well. At the high-water cut stage of water flooding with nine-spot well pattern, the oil recovery can be further improved with staggered line-drive pattern by converting the corner well into injection well. It is helpful to increase the oil production of corner well of nine-spot well pattern by increasing the injection rate, and improve ultimate oil recovery, but the water-free production period would be greatly shortened and water-free recovery would decrease.展开更多
Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed an...Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed and verified. This method is started from data processing, the correspondence between water injectors and oil producers is determined according to the influence radius of the water injectors, the influence degree of a water injector on an oil producer in the month concerned is added as a model feature, and a Random Forest(RF) model is built to fill the dynamic data of water flooding. The single well history is divided into 4 stages according to its water cut, that is, low water cut, middle water cut, high water cut and extra-high water cut stages. In each stage, a TCN based prediction model is established, hyperparameters of the model are optimized by the Sparrow Search Algorithm(SSA). Finally, the models of the 4 stages are integrated into one whole-life model of the well for production prediction. The application of this method in Daqing Oilfield, NE China shows that:(1) Compared with conventional data processing methods, the data obtained by this processing method are more close to the actual production, and the data set obtained is more authentic and complete.(2) The TCN model has higher prediction accuracy than other 11 models such as Long Short Term Memory(LSTM).(3) Compared with the conventional full-life-cycle models, the model of integrated stages can significantly reduce the error of production prediction.展开更多
To explore the method of improving development effect and solving the problem of water breakthrough and water out for ultralow permeability fractured reservoirs, an indoor evaluation method of dynamic imbibition for f...To explore the method of improving development effect and solving the problem of water breakthrough and water out for ultralow permeability fractured reservoirs, an indoor evaluation method of dynamic imbibition for fracture-matrix system was established taking the Chang 8 reservoir in southern Yanchang Oilfield as a research target. Key factors for the imbibition effect were obtained, an imbibition's rate expression was obtained, a model considering the double effects of imbibition-displacement was built and optimal injection and production parameters for the research area were obtained as well. The results show that an optimum displacement rate that maximizes the oil displacement efficiency exists in the water displacing oil process, and the optimal displacing rate becomes smaller as the permeability decreases. The imbibition displacement efficiency increases as the reservoir quality index and water wettability index of rock become bigger. But the larger the initial water saturation or oil-water viscosity ratio is, the smaller the imbibition displacement efficiency is. The optimal injection-production ratio for the Chang 8 reservoir of southern Yanchang Oilfield is 0.95, and the predicted recovery is 17.2% when the water cut is 95%, it is 2.9% higher than the recovery of conventional injection-production ratio 1.2. By using the moderate water injection technique based on the double effects of imbibition-displacement mechanism, the water injection development effect for the ultra-low permeability fractured reservoirs can be improved significantly.展开更多
The Churchill Falls Hydro Project (called the ‘Upper Churchill Development’) in Labrador [CF(L)Co], was initiated in the late 1960s. At that time, in general, not much attention was paid to the impact of such develo...The Churchill Falls Hydro Project (called the ‘Upper Churchill Development’) in Labrador [CF(L)Co], was initiated in the late 1960s. At that time, in general, not much attention was paid to the impact of such development on the flooding of vegetation, especially forest stands. Both forested and un-forested terrestrial vegetation types were flooded (244,915 ha creating some 74,075 ha of Islands) in the construction of the Main (Smallwood) Reservoir. The effect of flooding and of the constructions, both above and below the Main Reservoir major dyke system, were the subject of our investigation. This paper, the third in a series, reports on the effect of building the dykes during the early phases of construction with the descriptions of the post flooded conditions below the dykes as related to vegetation. The direct disturbances were excavations, fills, and partial and /or total removal of vegetation cover from fabrication platforms and from gravel and rock extraction sites. No new vegetation cover established in the abandoned quarries and gravel pits. However camp sites and manufacturing platforms were subsequently taken over by Alder growth. The indirect disturbances were the flooding of land areas and the de-watering of sections of the original river and lowering of the water level in some lakes. The results of flooding and the de-watering of some nearby areas are illustrated with aerial photographs and figures showing the environmental impact zones and new shore line development. The flooded trees in large and small pools of stagnant water died suddenly and remain in their original place. New vegetation cover developed on the exposed shore lines of de-watered rivers and lakes.展开更多
Low-salinity flooding has been extensively investigated. However, the effects of several variables, such as mineralogical composition, have been neglected. In this regard, the main objective here was to optimize low-s...Low-salinity flooding has been extensively investigated. However, the effects of several variables, such as mineralogical composition, have been neglected. In this regard, the main objective here was to optimize low-salinity water flooding of reservoirs with a wide range of rock mineralogy. Five different brines were determined in reservoirs with different mineral compositions. The mineral composition consisted of limestone and dolomite and the mineralogy varied between 0 and 100% limestone content. The results indicated that the optimum mineralogical system consists of 50% limestone and 50% dolomite flooded with 100% diluted formation brine. Additionally, reservoir mineral composition plays a significant role in the performance of low-salinity water flooding. The findings here will improve our understanding of rock composition effects on the performance of low-salinity water flooding and provide the industry with data that can scientifically improve process optimization.展开更多
The global mobility theory was used to evaluate the experimental results of oil displacement with water of different salinities.The results of scanning electron microscopy,X diffraction of clay minerals,nonlinear seep...The global mobility theory was used to evaluate the experimental results of oil displacement with water of different salinities.The results of scanning electron microscopy,X diffraction of clay minerals,nonlinear seepage and nuclear magnetic resonance experiments and particle migration inhibition experiments before and after water flooding were compared to determine the mechanisms of water sensitive damage and enhanced water flooding mechanism of low permeability sandy conglomerate reservoirs in Wushi region of Beibuwan Basin,China.A production equation of the oil-water two phase flow well considering low-speed non-Darcy seepage and reservoir stress sensitivity was established to evaluate the effect of changes in reservoir properties and oil-water two-phase seepage capacity on reservoir productivity quantitatively,and injection water source suitable for the low permeability sandy conglomerate reservoirs in Wushi region was selected according to dynamic compatibility experimental results of different types of injected water.The seepage capacity of reservoir is the strongest when the injected water is formation water of 2 times salinity.The water-sensitive damage mechanisms of the reservoirs in Wushi region include hydration of clay minerals and particle migration.By increasing the content of cations(especially K+and Mg2+)in the injected water,the water-sensitive damage of the reservoir can be effectively inhibited.The formation water of Weizhou Formation can be used as the injection water source of low permeability sandy conglomerate reservoirs in the Wushi region.展开更多
Carbonate reservoirs in China have the characteristics of diversified accumulation pattern, complex structure and varying reservoir conditions. Concerning these characteristics, this article tracks the technical break...Carbonate reservoirs in China have the characteristics of diversified accumulation pattern, complex structure and varying reservoir conditions. Concerning these characteristics, this article tracks the technical breakthroughs and related practices since the 1950 s, summarizes the developed theory and technologies of carbonate reservoir development, analyzes their adaptability and problems, and proposes their development trend. The following theory and technologies have come into being:(1) carbonate reservoir formation mechanisms and compound flow mechanisms in complex medium;(2) reservoir identification and description technologies based on geophysics and discrete fracture-vuggy modeling method;(3) well testing analysis technology and numerical simulation method of coupling free flow and porous media flow;(4) enhanced oil recovery techniques for nitrogen single well huff and puff, and water flooding development techniques with well pattern design in spatial structure, changed intensity water injection, water plugging and channel blocking as the core;(5) drilling and completion techniques, acid fracturing techniques and its production increasing techniques. To realize the efficient development of carbonate oil and gas reservoirs, researches in four aspects need to be done:(1) complex reservoir description technology with higher accuracy;(2) various enhanced oil recovery techniques;(3) improving the drilling method and acid fracturing method for ultra-deep carbonate reservoir and significantly cutting engineering cost;(4) strengthening the technological integration of information, big data, cloud computation, and artificial intelligence in oilfield development to realize the smart development of oilfield.展开更多
基金The project supported by the Innovative Project of CAS (KJCX-SW-L08)the National Basic Research Program of China(973)
文摘The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequently elucidated. Then, a numerical approach of sensitivity analysis is adopted to quantify their corresponding dominance degree among the similarity parameters. In this way, we may finally identify major scaling law in different parameter range and demonstrate the respective effects of viscosity, permeability and injection rate.
基金supported by Research project of Shengli Oifield Exploration and Development Research Institute (Grant No.30200018-21-ZC0613-0125)。
文摘For the ultra-high water-cut reservoirs,after long-term water injection exploitation,the physical properties of the reservoir change and the heterogeneity of the reservoir becomes increasingly severe,which further aggravates the spatial difference of the flow field.In this study,the displacement experiments were employed to investigate the variations in core permeability,porosity,and relative permeability after a large amount of water injection.A relative permeability endpoint model was proposed by utilizing the alternating conditional expectation(ACE)transformation to describe the variation in relative permeability based on the experimental data.Based on the time dependent models for permeability and relative permeability,the traditional oil-water two-phase model was improved and discretized using the mimetic finite difference method(MFD).The two cases were launched to confirm the validation of the proposed model.The impact of time-varying physical features on reservoir production performance was studied in a real water flooding reservoir.The experimental results indicate that the overall relative permeability curve shifts to the right as water injection increases.This shift corresponds to a transition towards a more hydrophilic wettability and a decrease in residual oil saturation.The endpoint model demonstrates excellent accuracy and can be applied to time-varying simulations of reservoir physics.The impact of variations in permeability and relative permeability on the reservoir production performance yields two distinct outcomes.The time-varying permeability of the reservoir results in intensified water channeling and poor development effects.On the other hand,the time-varying relative permeability enhances the oil phase seepage capacity,facilitating oil displacement.The comprehensive time-varying behavior is the result of the combined influence of these two parameters,which closely resemble the actual conditions observed in oil field exploitation.The time-varying simulation technique of reservoir physical properties proposed in this paper can continuously and stably characterize the dynamic changes of reservoir physical properties during water drive development.This approach ensures the reliability of the simulation results regarding residual oil distribution.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University(IRT1294)the China National Science and Technology Major Projects(Grant No:2016ZX05011)
文摘Layer regrouping is to divide all the layers into several sets of production series according to the physical properties and recovery percent of layers at high water-cut stage, which is an important technique to improve oil recovery for high water-cut multilayered reservoirs. Dif- ferent regroup scenarios may lead to different production performances. Based on unstable oil-water flow theory, a multilayer commingled reservoir simulator is established by modifying the production split method. Taking into account the differences of layer properties, including per- meability, oil viscosity, and remaining oil saturation, the pseudo flow resistance contrast is proposed to serve as a characteristic index of layer regrouping for high water-cut multilayered reservoirs. The production indices of multi- layered reservoirs with different pseudo flow resistances are predicted with the established model in which the data are taken from the Shengtuo Oilfield. Simulation results show that the pseudo flow resistance contrast should be less than 4 when the layer regrouping is implemented. The K-means clustering method, which is based on the objec- tive function, is used to automatically carry out the layer regrouping process according to pseudo flow resistances. The research result is applied to the IV-VI sand groups of the second member of the Shahejie Formation in the Shengtuo Oilfield, a favorable development performance is obtained, and the oil recovery is enhanced by 6.08 %.
文摘The rapid changing near source, multi-stream depositional environment of conglomerate reservoirs leads to severe heterogeneity, complex lithology and physical properties, and large changes of oil layer resistivity. Quantitative evaluation of water-flooded layers has become an important but difficult focus for secondary development of oilfields. In this paper, based on the analysis of current problems in quantitative evaluation of water-flooded layers, the Kexia Group conglomerate reservoir of the Sixth District in the Karamay Oilfield was studied. Eight types of conglomerate reservoir lithology were identified effectively by a data mining method combined with the data from sealed coring wells, and then a multi-parameter model for quantitative evaluation of the water-flooded layers of the main oil-bearing lithology was developed. Water production rate, oil saturation and oil productivity index were selected as the characteristic parameters for quantitative evaluation of water-flooded layers of conglomerate reservoirs. Finally, quantitative evaluation criteria and identification rules for water-flooded layers of main oil-bearing lithology formed by integration of the three characteristic parameters of water-flooded layer and undisturbed formation resistivity. This method has been used in evaluation of the water-flooded layers of a conglomerate reservoir in the Karamay Oilfield and achieved good results, improving the interpretation accuracy and compliance rate. It will provide technical support for avoiding perforation of high water-bearing layers and for adjustment of developmental programs.
文摘Oilfield A is a fractured buried hill reservoir in Bohai bay of China. In order to solve the difficult problem of water flooding timing and method in oilfield. Considering the characteristics of the buried hill fractures with stress sensitivity and strong heterogeneity, the ECLIPSE software was used in the research, and a three-dimensional injection-production numerical model for horizontal wells in buried hill reservoirs is established. According to the main research factors in water flooding, a series of water flooding schemes are designed, and the optimization of water flooding timing, oil recovery rate and water flooding mode in buried hill reservoirs were carried out. The results show that the optimum pressure level of fractured reservoir is about 70% of the original reservoir pressure. The optimal water flooding method is the conventional water flooding in the initial stage, when the water cut reaches 80%, it is converted into periodic water flooding. The oil recovery is the highest when the water injection period is 4 months. Field tests show that conventional water flooding is carried out in the initial stage of the oilfield A when the pressure is reduced to 70% of the original. Periodic water flooding is carried out when water cut is 80%. Good development results had been achieved in the 10 years since oilfield A was put into production. The average productivity of single well reached 300 m3/d in the initial stage, at present, the water cut is 60%, and the recovery degree is 18.5%, which is better than that of similar oilfields. This technology improves the water flooding effect of blocky bottom water fractured dual media reservoirs in metamorphic buried hills, and provides a reference for the development of similar reservoirs.
文摘In order to understand the water-flooding characteristics of different fracture systems in metamorphic rock buried hill reservoirs and the mechanism of improving water-flooding development effect, a three-dimensional physical model of fractured reservoirs is established according to the similarity criterion based on the prototype of metamorphic buried hill reservoirs in JZ Oilfield in Bohai Bay Basin. Combined with the fractured reservoir characteristics of JZ Oilfield, the water displacement characteristics of the top-bottom staggered injection-production well pattern in different fracture network mode and different fracture development degree of buried hill reservoir are studied. The experimental results show that: 1) the more serious the fracture system irregularity is, the shorter the water-free oil production period is and the lower the water-free oil recovery is. After water breakthrough of production wells, the water cut rises faster, and the effect of water flooding development is worse;2) under the condition of non-uniform fracture development, the development effect of the bottom fracture undeveloped is better than that of the middle fracture undeveloped. Water injection wells are deployed in areas with relatively few fractures, while oil wells are deployed in fractured areas with higher oil recovery and better development effect.
基金Supported by the China National Science and Technology Major Project(2016ZX05014-003-004)
文摘Based on the similarity criterion, volcanic rock samples were taken from outcrops to make experimental models. Water flooding experiments of five-spot well pattern, nine-spot well pattern, five-spot to nine-spot well pattern, the relationship between relative well and fracture positions, and injection rate in dissolution vug-cave reservoirs with/without fractures were carried out to analyze variation regularities of development indexes, find out development characteristics of water flooding with different well patterns and sort out the optimal water flooding development mode. For dissolution vug-cave reservoirs without fractures, five-spot well pattern waterflooding has very small sweeping area, serious water channeling and low oil recovery. When the well pattern was adjusted from five-spot to nine-spot well pattern, oil recovery could be largely improved, but the corner well far from the injector is little affected. In dissolution vug-cave reservoirs with fractures, when the injector and producer are not connected by fractures, the fractures could effectively connect the poorly linked vugs to improve the development effect of water flooding. Whether there are fractures or not in dissolution vug-cave reservoirs, the development effect of nine-spot well-pattern is much better than that of five-spot well pattern and five-spot to nine-spot well pattern, this is more evident when there are fractures, and the edge well has better development indexes than corner well. At the high-water cut stage of water flooding with nine-spot well pattern, the oil recovery can be further improved with staggered line-drive pattern by converting the corner well into injection well. It is helpful to increase the oil production of corner well of nine-spot well pattern by increasing the injection rate, and improve ultimate oil recovery, but the water-free production period would be greatly shortened and water-free recovery would decrease.
基金Major Unified Construction Project of Petro China(2019-40210-000020-02)。
文摘Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed and verified. This method is started from data processing, the correspondence between water injectors and oil producers is determined according to the influence radius of the water injectors, the influence degree of a water injector on an oil producer in the month concerned is added as a model feature, and a Random Forest(RF) model is built to fill the dynamic data of water flooding. The single well history is divided into 4 stages according to its water cut, that is, low water cut, middle water cut, high water cut and extra-high water cut stages. In each stage, a TCN based prediction model is established, hyperparameters of the model are optimized by the Sparrow Search Algorithm(SSA). Finally, the models of the 4 stages are integrated into one whole-life model of the well for production prediction. The application of this method in Daqing Oilfield, NE China shows that:(1) Compared with conventional data processing methods, the data obtained by this processing method are more close to the actual production, and the data set obtained is more authentic and complete.(2) The TCN model has higher prediction accuracy than other 11 models such as Long Short Term Memory(LSTM).(3) Compared with the conventional full-life-cycle models, the model of integrated stages can significantly reduce the error of production prediction.
基金Supported by Science Coordination New Project(2016KTCL01-12)
文摘To explore the method of improving development effect and solving the problem of water breakthrough and water out for ultralow permeability fractured reservoirs, an indoor evaluation method of dynamic imbibition for fracture-matrix system was established taking the Chang 8 reservoir in southern Yanchang Oilfield as a research target. Key factors for the imbibition effect were obtained, an imbibition's rate expression was obtained, a model considering the double effects of imbibition-displacement was built and optimal injection and production parameters for the research area were obtained as well. The results show that an optimum displacement rate that maximizes the oil displacement efficiency exists in the water displacing oil process, and the optimal displacing rate becomes smaller as the permeability decreases. The imbibition displacement efficiency increases as the reservoir quality index and water wettability index of rock become bigger. But the larger the initial water saturation or oil-water viscosity ratio is, the smaller the imbibition displacement efficiency is. The optimal injection-production ratio for the Chang 8 reservoir of southern Yanchang Oilfield is 0.95, and the predicted recovery is 17.2% when the water cut is 95%, it is 2.9% higher than the recovery of conventional injection-production ratio 1.2. By using the moderate water injection technique based on the double effects of imbibition-displacement mechanism, the water injection development effect for the ultra-low permeability fractured reservoirs can be improved significantly.
文摘The Churchill Falls Hydro Project (called the ‘Upper Churchill Development’) in Labrador [CF(L)Co], was initiated in the late 1960s. At that time, in general, not much attention was paid to the impact of such development on the flooding of vegetation, especially forest stands. Both forested and un-forested terrestrial vegetation types were flooded (244,915 ha creating some 74,075 ha of Islands) in the construction of the Main (Smallwood) Reservoir. The effect of flooding and of the constructions, both above and below the Main Reservoir major dyke system, were the subject of our investigation. This paper, the third in a series, reports on the effect of building the dykes during the early phases of construction with the descriptions of the post flooded conditions below the dykes as related to vegetation. The direct disturbances were excavations, fills, and partial and /or total removal of vegetation cover from fabrication platforms and from gravel and rock extraction sites. No new vegetation cover established in the abandoned quarries and gravel pits. However camp sites and manufacturing platforms were subsequently taken over by Alder growth. The indirect disturbances were the flooding of land areas and the de-watering of sections of the original river and lowering of the water level in some lakes. The results of flooding and the de-watering of some nearby areas are illustrated with aerial photographs and figures showing the environmental impact zones and new shore line development. The flooded trees in large and small pools of stagnant water died suddenly and remain in their original place. New vegetation cover developed on the exposed shore lines of de-watered rivers and lakes.
文摘Low-salinity flooding has been extensively investigated. However, the effects of several variables, such as mineralogical composition, have been neglected. In this regard, the main objective here was to optimize low-salinity water flooding of reservoirs with a wide range of rock mineralogy. Five different brines were determined in reservoirs with different mineral compositions. The mineral composition consisted of limestone and dolomite and the mineralogy varied between 0 and 100% limestone content. The results indicated that the optimum mineralogical system consists of 50% limestone and 50% dolomite flooded with 100% diluted formation brine. Additionally, reservoir mineral composition plays a significant role in the performance of low-salinity water flooding. The findings here will improve our understanding of rock composition effects on the performance of low-salinity water flooding and provide the industry with data that can scientifically improve process optimization.
基金Supported by the China National Science and Technology Major Project(2016ZX05024006).
文摘The global mobility theory was used to evaluate the experimental results of oil displacement with water of different salinities.The results of scanning electron microscopy,X diffraction of clay minerals,nonlinear seepage and nuclear magnetic resonance experiments and particle migration inhibition experiments before and after water flooding were compared to determine the mechanisms of water sensitive damage and enhanced water flooding mechanism of low permeability sandy conglomerate reservoirs in Wushi region of Beibuwan Basin,China.A production equation of the oil-water two phase flow well considering low-speed non-Darcy seepage and reservoir stress sensitivity was established to evaluate the effect of changes in reservoir properties and oil-water two-phase seepage capacity on reservoir productivity quantitatively,and injection water source suitable for the low permeability sandy conglomerate reservoirs in Wushi region was selected according to dynamic compatibility experimental results of different types of injected water.The seepage capacity of reservoir is the strongest when the injected water is formation water of 2 times salinity.The water-sensitive damage mechanisms of the reservoirs in Wushi region include hydration of clay minerals and particle migration.By increasing the content of cations(especially K+and Mg2+)in the injected water,the water-sensitive damage of the reservoir can be effectively inhibited.The formation water of Weizhou Formation can be used as the injection water source of low permeability sandy conglomerate reservoirs in the Wushi region.
基金Supported by the China National Science and Technology Major Project(2016ZX05014)
文摘Carbonate reservoirs in China have the characteristics of diversified accumulation pattern, complex structure and varying reservoir conditions. Concerning these characteristics, this article tracks the technical breakthroughs and related practices since the 1950 s, summarizes the developed theory and technologies of carbonate reservoir development, analyzes their adaptability and problems, and proposes their development trend. The following theory and technologies have come into being:(1) carbonate reservoir formation mechanisms and compound flow mechanisms in complex medium;(2) reservoir identification and description technologies based on geophysics and discrete fracture-vuggy modeling method;(3) well testing analysis technology and numerical simulation method of coupling free flow and porous media flow;(4) enhanced oil recovery techniques for nitrogen single well huff and puff, and water flooding development techniques with well pattern design in spatial structure, changed intensity water injection, water plugging and channel blocking as the core;(5) drilling and completion techniques, acid fracturing techniques and its production increasing techniques. To realize the efficient development of carbonate oil and gas reservoirs, researches in four aspects need to be done:(1) complex reservoir description technology with higher accuracy;(2) various enhanced oil recovery techniques;(3) improving the drilling method and acid fracturing method for ultra-deep carbonate reservoir and significantly cutting engineering cost;(4) strengthening the technological integration of information, big data, cloud computation, and artificial intelligence in oilfield development to realize the smart development of oilfield.