This paper proposes a new approach to the water flow algorithm for text line segmentation. In the basic method the hypothetical water flows under few specified angles which have been defined by water flow angle as par...This paper proposes a new approach to the water flow algorithm for text line segmentation. In the basic method the hypothetical water flows under few specified angles which have been defined by water flow angle as parameter. It is applied to the document image frame from left to right and vice versa. As a result, the unwetted and wetted areas are established. These areas separate text from non-text elements in each text line, respectively. Hence, they represent the control areas that are of major importance for text line segmentation. Primarily, an extended approach means extraction of the connected-components by bounding boxes over text. By this way, each connected component is mutually separated. Hence, the water flow angle, which defines the unwetted areas, is determined adaptively. By choosing appropriate water flow angle, the unwetted areas are lengthening which leads to the better text line segmentation. Results of this approach are encouraging due to the text line segmentation improvement which is the most challenging step in document image processing.展开更多
A particular porosity method named "slot method" is implemented in a depth-integrated shallow water flow model (DIVAST) to simulate wetting and drying processes. Discussed is the relationship between the shape fac...A particular porosity method named "slot method" is implemented in a depth-integrated shallow water flow model (DIVAST) to simulate wetting and drying processes. Discussed is the relationship between the shape factors of the "slot" and the preset depth used in "wetting-drying" algorithm. Two typical tests are conducted to examine the performance of the method with the effect of the shape factors of the "slot" being checked in detail in the first test. Numerical results demonstrate that: 1 ) no additional effort to improve the finite difference scheme is needed to implement "slot method" in DIVAST, and 2) "slot method" will simulate wetting and diying processes correctly if the shape factors of the "slot" being selected properly.展开更多
For the case of carbonate reservoir water flooding development, the flow field identification method based on streamline modeling result was proposed. The Ocean for Petrel platform was used to build the plug-in that e...For the case of carbonate reservoir water flooding development, the flow field identification method based on streamline modeling result was proposed. The Ocean for Petrel platform was used to build the plug-in that exported the streamline data, and the subsequent data was processed and clustered through Python programming, to display the flow field with different water flooding efficiencies at different time in the reservoir. We used density peak clustering as primary streamline cluster algorithm, and Silhouette algorithm as the cluster validation algorithm to select reasonable cluster number, and the results of different clustering algorithms were compared. The results showed that the density peak clustering algorithm could provide better identified capacity and higher Silhouette coefficient than K-means, hierachical clustering and spectral clustering algorithms when clustering coefficients are the same. Based on the results of streamline clustering method, the reservoir engineers can easily identify the flow area with quantification treatment, the inefficient water injection channels and area with developing potential in reservoirs can be identified. Meanwhile, streamlines between the same injector and producer can be subdivided to describe driving capacity distribution in water phase, providing useful information for the decision making of water flooding optimization, well pattern adjustment and deep profile modification.展开更多
文摘This paper proposes a new approach to the water flow algorithm for text line segmentation. In the basic method the hypothetical water flows under few specified angles which have been defined by water flow angle as parameter. It is applied to the document image frame from left to right and vice versa. As a result, the unwetted and wetted areas are established. These areas separate text from non-text elements in each text line, respectively. Hence, they represent the control areas that are of major importance for text line segmentation. Primarily, an extended approach means extraction of the connected-components by bounding boxes over text. By this way, each connected component is mutually separated. Hence, the water flow angle, which defines the unwetted areas, is determined adaptively. By choosing appropriate water flow angle, the unwetted areas are lengthening which leads to the better text line segmentation. Results of this approach are encouraging due to the text line segmentation improvement which is the most challenging step in document image processing.
基金the National Natural Science Foundation of China (Grant No.10702050)the Natural Science Foundation of Tianjin (Grant No.07JCYBJC07500)the Support Plan of Science and Technology of Tianjin (Grant No.07ZCGYSH01700)
文摘A particular porosity method named "slot method" is implemented in a depth-integrated shallow water flow model (DIVAST) to simulate wetting and drying processes. Discussed is the relationship between the shape factors of the "slot" and the preset depth used in "wetting-drying" algorithm. Two typical tests are conducted to examine the performance of the method with the effect of the shape factors of the "slot" being checked in detail in the first test. Numerical results demonstrate that: 1 ) no additional effort to improve the finite difference scheme is needed to implement "slot method" in DIVAST, and 2) "slot method" will simulate wetting and diying processes correctly if the shape factors of the "slot" being selected properly.
基金Supported by the the CNPC Science and Technology Innovation Fund Program(2017D-5007-0202)
文摘For the case of carbonate reservoir water flooding development, the flow field identification method based on streamline modeling result was proposed. The Ocean for Petrel platform was used to build the plug-in that exported the streamline data, and the subsequent data was processed and clustered through Python programming, to display the flow field with different water flooding efficiencies at different time in the reservoir. We used density peak clustering as primary streamline cluster algorithm, and Silhouette algorithm as the cluster validation algorithm to select reasonable cluster number, and the results of different clustering algorithms were compared. The results showed that the density peak clustering algorithm could provide better identified capacity and higher Silhouette coefficient than K-means, hierachical clustering and spectral clustering algorithms when clustering coefficients are the same. Based on the results of streamline clustering method, the reservoir engineers can easily identify the flow area with quantification treatment, the inefficient water injection channels and area with developing potential in reservoirs can be identified. Meanwhile, streamlines between the same injector and producer can be subdivided to describe driving capacity distribution in water phase, providing useful information for the decision making of water flooding optimization, well pattern adjustment and deep profile modification.