期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
For more and purer hydrogen-the progress and challenges in water gas shift reaction
1
作者 Limin Zhou Yanyan Liu +8 位作者 Shuling Liu Huanhuan Zhang Xianli Wu Ruofan Shen Tao Liu Jie Gao Kang Sun Baojun Li Jianchun Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期363-396,I0010,共35页
The water gas shift(WGS) reaction is a standard reaction that is widely used in industrial hydrogen production and removal of carbon monoxide. The improved catalytic performance of WGS reaction also contributes to amm... The water gas shift(WGS) reaction is a standard reaction that is widely used in industrial hydrogen production and removal of carbon monoxide. The improved catalytic performance of WGS reaction also contributes to ammonia synthesis and other reactions. Advanced catalysts have been developed for both high and low-temperature reactions and are widely used in industry. In recent years, supported metal nanoparticle catalysts have been researched due to their high metal utilization. Low-temperature catalysts have shown promising results, including high selectivity, high shift rates, and higher activity potential. Additionally, significant progress has been made in removing trace CO through the redox reaction in electrolytic cell. This paper reviews the development of WGS reaction catalysts, including the reaction mechanism, catalyst design, and innovative research methods. The catalyst plays a crucial role in the WGS reaction, and this paper provides an instant of catalyst design under different conditions. The progress of catalysts is closely related to the development of advanced characterization techniques.Furthermore, modifying the catalyst surface to enhance activity and significantly increase reaction kinetics is a current research direction. This review goals to stimulate a better understanding of catalyst design, performance optimization, and driving mechanisms, leading to further progress in this field. 展开更多
关键词 water gas shift reaction Hydrogen production Heterogeneous catalysis reaction Mechanism Single atomic catalysts
下载PDF
Reverse water gas shift reaction over Co-precipitated Ni-CeO_2 catalysts 被引量:13
2
作者 王路辉 张少星 刘源 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第1期66-70,共5页
The Ni-CeO2 catalysts with different Ni contents were prepared by a co-precipitation method and used for Reverse Water Gas Shift (RWGS) reaction. 2wt.%Ni-CeO2 showed excellent catalytic performance in terms of activ... The Ni-CeO2 catalysts with different Ni contents were prepared by a co-precipitation method and used for Reverse Water Gas Shift (RWGS) reaction. 2wt.%Ni-CeO2 showed excellent catalytic performance in terms of activity, selectivity, and stability for RWGS reaction. Characterizations of the catalyst samples were conducted by XRD and TPR. The results indicated that, in Ni-CeO2 catalysts, there were three kinds of nickel, nickel ions in ceria lattice, highly dispersed NiO and bulk NiO. Oxygen vacancies were formed in CeO2 lattice due to the incorporation of Ni^2+ ions into ceria lattice. Oxygen vacancies formed in ceria lattice and highly dispersed Ni were key active components for RWGS, and bulk Ni was key active component for methanation of CO2. 展开更多
关键词 reverse water gas shift reaction NICKEL CEO2 oxygen vacancy
下载PDF
Catalytic Reduction of CO2 to CO via Reverse Water Gas Shift Reaction:Recent Advances in the Design of Active and Selective Supported Metal Catalysts 被引量:12
3
作者 Min Zhu Qingfeng Ge Xinli Zhu 《Transactions of Tianjin University》 EI CAS 2020年第3期172-187,共16页
The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemical... The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemicals and fuels.However,this reaction is mildly endothermic and competed by a strongly exothermic CO2 methanation reaction at low temperatures.Therefore,the improvement in the low-temperature activities and selectivity of the RWGS reaction is a key challenge for catalyst designs.We reviewed recent advances in the design strategies of supported metal catalysts for enhancing the activity of CO2 conversion and its selectivity to CO.These strategies include varying support,tuning metal–support interactions,adding reducible transition metal oxide promoters,forming bimetallic alloys,adding alkali metals,and enveloping metal particles.These advances suggest that enhancing CO2 adsorption and facilitating CO desorption are key factors to enhance CO2 conversion and CO selectivity.This short review may provide insights into future RWGS catalyst designs and optimization. 展开更多
关键词 Carbon dioxide REVERSE water gas shift reaction METHANATION SUPPORTED metal CATALYST Mechanism
下载PDF
Boosting the water gas shift reaction on Pt/CeO_(2)-based nanocatalysts by compositional modification: Support doping versus bimetallic alloying 被引量:2
4
作者 Kun Yuan Xiao-Chen Sun +4 位作者 Hai-Jing Yin Liang Zhou Hai-Chao Liu Chun-Hua Yan Ya-Wen Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期241-249,共9页
The water gas shift reaction is of vital significance for the generation and transition of energy due to the application in hydrogen production and industries such as ammonia synthesis and fuel cells.The influence of ... The water gas shift reaction is of vital significance for the generation and transition of energy due to the application in hydrogen production and industries such as ammonia synthesis and fuel cells.The influence of support doping and bimetallic alloying on the catalytic performance of Pt/Ce O_(2)-based nanocatalysts in water gas shift reaction was reported in this work.Various lanthanide ions and 3d transition metals were respectively introduced into the Ce O_(2)support or Pt to form Pt/Ce O_(2):Ln(Ln=La,Nd,Gd,Tb,Yb)and Pt M/Ce O_(2)(M=Fe,Co,Ni)nanocatalysts.The sample of Pt/Ce O_(2):Tb showed the highest activity(TOF at 200℃=0.051 s^(-1))among the Pt/Ce O_(2):Ln and the undoped Pt/Ce O_(2)catalysts.Besides,the sample of Pt Fe/Ce O_(2)exhibited the highest activity(TOF at 200℃=0.12 s^(-1))among Pt M/Ce O_(2)catalysts.The results of the multiple characterizations indicated that the catalytic activity of Pt/Ce O_(2):Ln catalysts was closely correlated with the amount of oxygen vacancies in doped ceria support.However,the different activity of Pt M/Ce O_(2)bimetallic catalysts was owing to the various Pt oxidation states of the bimetals dispersed on ceria.The study of the reaction pathway indicated that both the samples of Pt/Ce O_(2)and Pt/Ce O_(2):Tb catalyzed the reaction through the formate pathway,and the enhanced activity of the latter derived from the increased concentration of oxygen vacancies along with promoted water dissociation.As for the sample of Pt Fe/Ce O_(2),its catalytic mechanism was the carboxyl route with a higher reaction rate due to the moderate valence of Pt along with improved CO activation. 展开更多
关键词 Pt/CeO_(2)catalysts watergas shift reaction Support doping Bimetallic alloying
下载PDF
Selective synthesis of carbon monoxide via formates in reverse water–gas shift reaction over alumina-supported gold catalyst
5
作者 Nobuhiro Ishito Kenji Hara +1 位作者 Kiyotaka Nakajima Atsushi Fukuoka 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期304-308,共5页
Thermal decomposition of formic acid on SiO2, CeO2 and γ-Al2O3 was studied as an elementary step of reverse water–gas shit reaction(RWGS) over supported Au catalysts. γ-Al2O3 showed the highest CO selectivity amo... Thermal decomposition of formic acid on SiO2, CeO2 and γ-Al2O3 was studied as an elementary step of reverse water–gas shit reaction(RWGS) over supported Au catalysts. γ-Al2O3 showed the highest CO selectivity among the tested oxides in the decomposition of formic acid. Infrared spectroscopy showed the formation of four formate species on γ-Al2O3: three η~1-type and one μ~2-type species, and these formates decomposed to CO at 473 K or higher. Au-loaded γ-Al2O3 samples were prepared by a depositionprecipitation method and used as catalysts for RWGS. The supported Au catalyst gave CO with high selectivity over 99% from CO2 and H2, which is attributed to the formation of formates on Au and subsequent decomposition to CO on γ-Al2O3. 展开更多
关键词 Reverse watergas shift reaction Carbon dioxide Hydrogen Formate Carbon monoxide Alumina Gold
下载PDF
Computational Screening of Pt1@Ti_(3)C_(2)T_(2)(T=O,S)MXene Catalysts for Water-Gas Shift Reaction
6
作者 Yang Meng Haiyan Wang +2 位作者 Jin-Xia Liang Chun Zhu Jun Li 《Precision Chemistry》 2024年第2期70-80,共11页
Single-atom catalysts(SACs)provide an oppor-tunity to elucidate the catalytic mechanism of complex reactions in heterogeneous catalysis.The low-temperature water-gas shift(WGS)reaction is an important industrial techn... Single-atom catalysts(SACs)provide an oppor-tunity to elucidate the catalytic mechanism of complex reactions in heterogeneous catalysis.The low-temperature water-gas shift(WGS)reaction is an important industrial technology to obtain high purity hydrogen.Herein,we study the catalytic activity of Pt1@Ti_(3)C_(2)T_(2)(T=O,S)SACs,where one subsurface Ti atom with three T vacancies in the functionalized Ti_(3)C_(2)T_(2)(T=O,S)MXene is substituted by one Pt atom,for the low-temperature show that Pt1@Ti_(3)C_(2)T_(2)provides an excellent platform for the WGS reaction by its bowl-shaped vacancy derived from the Pt1 single atom and three T defects surrounding it.Especially,Pt1@Ti_(3)C_(2)S_(2)SAC has higher catalytic performance for the WGS reaction,due to the weaker electronegativity of the S atom than the O atom,which significantly reduces the energy barrier of H*migration in the WGS reaction,which is often the rate-determining step.In the most favorable redox mechanism of the WGS reaction on Pt1@Ti_(3)C_(2)S_(2),the rate-determining step is the dissociation of OH*into O*and H*with the energy barrier as low as 1.12 eV.These results demonstrate that Pt1@Ti_(3)C_(2)S_(2)is promising in the application of MXenes for low-temperature WGS reactions. 展开更多
关键词 single-atom catalyst(SAC) density functional theory(DFT) water gas shift(WGS)reaction defective MXene thermocatalysis
原文传递
Influence of Reaction Conditions on Methanol Synthesis and WGS Reaction in the Syngas-to-DME Process 被引量:2
7
作者 Ligang Wang Deren Fang +3 位作者 Xingyun Huang Shigang Zhang Yue Qi Zhongmin Liu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第1期38-44,共7页
A series of CuO-ZnO catalysts (with different Cu/Zn molar ratios) were prepared, and evaluated under the reaction conditions of syngas-to-dimethyl ether (DME) with three sorts of feed gas and different space veloc... A series of CuO-ZnO catalysts (with different Cu/Zn molar ratios) were prepared, and evaluated under the reaction conditions of syngas-to-dimethyl ether (DME) with three sorts of feed gas and different space velocity. The catalysts were characterized by X-ray diffraction (XRD) and temperatureprogrammed reduction (TPR). The experiment results showed that the reaction conditions of syngas-to- DME process greatly affected the methanol synthesis and WGS reaction. The influence caused by Cu/Zn molar ratio was quite different on the two reactions; increasing of percentage of CO2 in feed gas was unfavorable for catalyst activity, and also inhibited both reactions; enhancement of reaction space velocity heavily influenced the performance of the catalyst, and the benefits were relatively less for methanol synthesis than for the WGS reaction. 展开更多
关键词 copper zinc Cu/Zn molar ratio METHANOL dimethyl ether water gas shift reaction SYNgas DEHYDRATION
下载PDF
Effect of Addition Sequence during Neutralization and Precipitation on Iron-based Catalysts for High Temperature Shift Reaction 被引量:1
8
作者 Li Wei Zhu Jianhua Mou Zhanjun 《Petroleum Science》 SCIE CAS CSCD 2007年第1期75-80,共6页
The preparation of the iron-based catalysts promoted by cobalt with a small amount of copper and aluminum for the high temperature shift reaction (HTS) with different sequences of adding catalyst raw materials durin... The preparation of the iron-based catalysts promoted by cobalt with a small amount of copper and aluminum for the high temperature shift reaction (HTS) with different sequences of adding catalyst raw materials during neutralization and precipitation was investigated. XRD, BET and particle size distribution (PSD) were used to characterize the prepared catalysts. It was found that the catalyst crystals were all γ-Fe2O3, and the intermediate of the catalyst after aging was Fe3O4. The crystallographic form of the catalyst and its intermediate was not affected by the addition sequence in the neutralization and precipitation process. The results showed that the specific surface area and the particle size of the catalysts depended on the addition sequence to the mother liquor. Cobalt with a small amount of copper and aluminum could increase the specific surface area and decrease the particle size of catalysts. 展开更多
关键词 water gas shift reaction Γ-FE2O3 cobalt-promoted catalyst iron-based catalyst
下载PDF
Structure-activity relationship in water-gas shift reaction over gold catalysts supported on Y-doped ceria 被引量:4
9
作者 Tatyana Tabakova Lyuba Ilieva +4 位作者 Ivan Ivanov Maela Manzoli Rodolfo Zanella Petya Petrova Zbigniew Kaszkur 《Journal of Rare Earths》 SCIE EI CAS CSCD 2019年第4期383-392,共10页
The utilization of pure hydrogen as an energy source in fuel cells gave rise to renewed interest in developing active and stable water-gas shift catalysts. Gold catalysts have proven to be very efficient for water-gas... The utilization of pure hydrogen as an energy source in fuel cells gave rise to renewed interest in developing active and stable water-gas shift catalysts. Gold catalysts have proven to be very efficient for water-gas shift reaction at low temperature. The aim of the present study was to investigate the effect of:(i) different preparation methods(impregnation and coprecipitation) to obtain a modified ceria support,and(ii) the amount of Y_2 O_3(1.0 wt%, 2.5 wt%, 5.0 wt% and 7.5 wt%) as dopant on the water-gas shift activity of Au/CeO_2 catalysts. An extended characterization by means of S_(BET), XRD, HRTEM/HAADF, FTIR,H_2-TPR and CO-TPR measurements in combination with careful evaluation of the catalyst behavior allowed to shed light on the parameters governing the water-gas shift activity. The catalysts show very high activity(>90% CO conversion) in the temperature range 180-220 ℃,with a slightly better performance of the gold catalysts on supports prepared by impregnation. The decreased activity with increasing Y_2 O_3 concentration is related to the hindering of oxygen mobility due to ordering of surface oxygen vacancies in vicinity of segregated Y^(3+). The effect of catalyst pre-treatments and the stability of the best performing samples were examined as well. 展开更多
关键词 GOLD catalyst water gas shift reaction Doped CERIA YTTRIUM Hydrogen production RARE earths
原文传递
Adsorption Properties of Water Vapor on Iron Oxide Containing Cerium Oxide
10
作者 郭益群 苏运来 +2 位作者 许群 李利民 王文祥 《Journal of Rare Earths》 SCIE EI CAS CSCD 1997年第4期27-30,共4页
The properties of adsorption of water vapor on iron oxide containing CeO 2 have been studied by pulse gas chromatography(GC) with the method of retention volume It was found that the adsorption heat of water vapor ... The properties of adsorption of water vapor on iron oxide containing CeO 2 have been studied by pulse gas chromatography(GC) with the method of retention volume It was found that the adsorption heat of water vapor on the catalyst decreased and the number of adsorption centers did not change as the amount of cerium oxide increasing in the samples However, the adsorption heat increased somewhat as the sample contains enough amount of cerium oxide The activities of the samples catalyzing the water gas shift(WGS) reaction were measured The results showed that the lower the adsorption heat of a sample was, the higher its activity became It was proved that cerium oxide was a catalyst accelerator in the WGS catalysis 展开更多
关键词 Rare earths CERIUM Adsorption heat water gas shift reaction CATALYSIS
下载PDF
NiCe bimetallic nanoparticles embedded in hexagonal mesoporous silica (HMS) for reverse water gas shift reaction
11
作者 Hui Dai Siqi Xiong +5 位作者 Yongqing Zhu Jian Zheng Lihong Huang Changjian Zhou Jie Deng Xinfeng Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第5期2590-2594,共5页
Reverse water gas shift(RWGS)reaction is a crucial process in CO_(2)utilization.Herein,Ni-and NiCe-containing hexagonal mesoporous silica(Ni-HMS and NiCe-HMS)catalysts were synthesized using an insitu one-pot method a... Reverse water gas shift(RWGS)reaction is a crucial process in CO_(2)utilization.Herein,Ni-and NiCe-containing hexagonal mesoporous silica(Ni-HMS and NiCe-HMS)catalysts were synthesized using an insitu one-pot method and applied for RWGS reaction.At certain reaction temperatures 500-750℃,Ni-HMS samples displayed a higher selectivity to the preferable CO than that of conventionally impregnated Ni/HMS catalyst.This could be originated from the smaller NiO nanoparticles over Ni-HMS catalyst.NiCe-HMS exhibited higher activity compared to Ni-HMS.The catalysts were characterized by means of TEM,XPS,XRD,H_(2)-TPR,CO_(2)-TPD,EPR and N_(2) adsorption-desortion technology.It was found that introduction of Ce created high concentration of oxygen vacancies,served as the active site for activating CO_(2).Also,this work analyzed the effect of the H_(2)/CO_(2)molar ratio on the best NiCe-HMS.When reaction gas H_(2)/CO_(2)molar ratio was 4 significantly decreased the selectivity to CO at low temperature,but triggered a higher CO_(2)conversion which is close to the equilibrium. 展开更多
关键词 Greenhouse gases Reverse water gas shift reaction CO selectivity CeO_(2) Hexagonal mesoporous silica
原文传递
Catalytic performance of Co-Mo-Ce-K/γ-Al_(2)O_(3) catalyst for the shift reaction of CO in coke oven gas
12
作者 Yuqiong ZHAO Yongfa ZHANG 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2010年第4期457-460,共4页
The catalytic performance of Co-Mo-Ce-K/γAl_(2)O_(3) catalyst for the shift reaction of CO in coke oven gas is investigated using X-ray diffraction(XRD)and temperature-programmed reduction(TPR).The results indicate t... The catalytic performance of Co-Mo-Ce-K/γAl_(2)O_(3) catalyst for the shift reaction of CO in coke oven gas is investigated using X-ray diffraction(XRD)and temperature-programmed reduction(TPR).The results indicate that Ce and K have a synergistic effect on promoting the catalytic activity,and the Co-Mo-Ce-K/γAl_(2)O_(3) catalyst with 3.0 wt-%CeO2 and 6.0 wt-%K_(2)O exhibits the highest activity.CeO2 favors Co dispersion and mainly produces an electronic effect.TPR characterization results indicate that the addition of CeO2-K_(2)O in the Co-Mo-Ce-K/γ-Al_(2)O_(3) catalyst decreases the reduction temperature of active components,and part of octahedrally coordinated Mo6+transforms into tetrahedrally coordinated Mo6+,which has a close relationship with the catalytic activity. 展开更多
关键词 coke oven gas water gas shift reaction sulfurtolerant catalyst cerium dioxide
原文传递
Cu-Pt-Au三元合金催化水煤气变换反应的密度泛函研究 被引量:3
13
作者 薛继龙 方镭 +4 位作者 罗伟 孟跃 陈涛 夏盛杰 倪哲明 《燃料化学学报》 EI CAS CSCD 北大核心 2019年第6期688-696,共9页
利用密度泛函理论(DFT)研究了不同掺杂量的Cu-Pt-Au催化剂性质及水煤气变换反应(WGSR)在催化剂表面上的反应机理。首先对Cu-Au和Pt-Au二元催化剂的稳定性和电子活性进行研究,发现Pt-Au催化剂的协同效应较优,稳定性更优,结合能为77.15eV,... 利用密度泛函理论(DFT)研究了不同掺杂量的Cu-Pt-Au催化剂性质及水煤气变换反应(WGSR)在催化剂表面上的反应机理。首先对Cu-Au和Pt-Au二元催化剂的稳定性和电子活性进行研究,发现Pt-Au催化剂的协同效应较优,稳定性更优,结合能为77.15eV,d带中心为-3.18eV。当将Cu继续掺杂到Pt-Au合金中构成Cu-Pt-Au三元催化剂时,Cu3-Pt3-Au(111)结合能为77.99eV,且d带中心为-3.05eV,表明其具有较优的稳定性和电子活性。探讨了WGSR在Cu3-Pt3-Au(111)上的反应历程,氧化还原机理因CO氧化的能垒达到4.84eV而不易进行。CHO和COOH两个中间体为竞争关系,且形成CHO中间物时的能垒较小,因此,反应相对容易按照甲酸机理进行。 展开更多
关键词 密度泛函理论 水煤气变换反应(wgsr) 机理 三元合金
下载PDF
对失活Co-Mo-KAl_2O_3硫化物催化剂的剖析研究 被引量:2
14
作者 李玉敏 王立刚 +2 位作者 王日杰 张继炎 张鎏 《化学工业与工程》 CAS 2001年第5期255-259,299,共6页
本文通过多种测试技术研究了工业Co -Mo -K Al2 O3 耐硫变换催化剂 ,失活样中各元素的存在状态、含量和物相变化。发现 ,在原催化剂中钾、硫从内部向表面迁移并有流失 ,γ -Al2 O3 转变为 (Al2 O3 ) 10R ,MoS2 、Co9S8变为含活性硫物种... 本文通过多种测试技术研究了工业Co -Mo -K Al2 O3 耐硫变换催化剂 ,失活样中各元素的存在状态、含量和物相变化。发现 ,在原催化剂中钾、硫从内部向表面迁移并有流失 ,γ -Al2 O3 转变为 (Al2 O3 ) 10R ,MoS2 、Co9S8变为含活性硫物种少的物相 ;从反应气中夹带的铁、铬、硅和镍杂质沉积在表面上。由此导致催化剂对H2 O和CO的吸附与反应能力的下降 ,最终造成严重失活。 展开更多
关键词 水煤气 变换反应 Co-Mo-K/Al2O3 催化剂 程序升温测硫 硫化物 耐硫变换
下载PDF
铜锰氧化物水煤气变换催化剂的还原与催化性能 被引量:1
15
作者 张兆春 章启贤 +4 位作者 殷亚青 吴帆 喻旭芳 许燕侦 李斌 《工业催化》 CAS 2008年第7期30-35,共6页
以CuSO4.5H2O和MnSO4.H2O为前驱物,NaOH为沉淀剂,选用共沉淀工艺,添加Al2O3、BaO+Al2O3、ZrO2+Al2O3或CeO2+Al2O3粉末作为催化助剂,制备了4种铜锰氧化物水煤气高温变换催化剂。X射线衍射分析表明,4种铜锰氧化物催化剂的主要化学成分为... 以CuSO4.5H2O和MnSO4.H2O为前驱物,NaOH为沉淀剂,选用共沉淀工艺,添加Al2O3、BaO+Al2O3、ZrO2+Al2O3或CeO2+Al2O3粉末作为催化助剂,制备了4种铜锰氧化物水煤气高温变换催化剂。X射线衍射分析表明,4种铜锰氧化物催化剂的主要化学成分为氧化铜和氧化锰系化合物以及锰钡、铜锰和铜锰铝复合氧化物;在催化水煤气变换反应(WGSR)后,4种铜锰氧化物的化学成分发生了变化。H2还原实验结果表明,在4种铜锰氧化物中,添加ZrO2+Al2O3的铜锰氧化物H2还原效率最好;而添加CeO2+Al2O3的铜锰氧化物H2还原效率最小。对WGSR出口气中CO体积分数进行对比分析可知,分别添加Al2O3和CeO2+Al2O3铜锰氧化物催化剂的变换活性较好。 展开更多
关键词 应用化学 水煤气变换反应 铜锰氧化物催化剂 还原 催化活性
下载PDF
金基二元合金团簇Au_(12)M(M=Cu,Pt,Ni)催化水煤气变换反应的理论研究 被引量:3
16
作者 方镭 夏盛杰 +5 位作者 薛继龙 孟跃 钱梦丹 罗伟 张晓锋 倪哲明 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2018年第8期1721-1728,共8页
利用密度泛函理论(DFT)对Au12M(M=Cu,Pt,Ni)3种合金团簇的结构稳定性、热力学稳定性和反应活性进行研究,并对金基二元合金团簇催化水煤气变换反应(WGSR)的反应机理进行探讨.研究发现,Au12Ni合金团簇的稳定性及电子活性最优.考察了WGSR... 利用密度泛函理论(DFT)对Au12M(M=Cu,Pt,Ni)3种合金团簇的结构稳定性、热力学稳定性和反应活性进行研究,并对金基二元合金团簇催化水煤气变换反应(WGSR)的反应机理进行探讨.研究发现,Au12Ni合金团簇的稳定性及电子活性最优.考察了WGSR在金基二元合金团簇上的氧化还原机理和羧基机理,表明Au12Cu合金团簇上WGSR按照氧化还原机理A进行,水解离后产生的OH*会继续解离为O*和H*(*代表吸附物质);Au12Pt及Au12Ni合金团簇上按照氧化还原机理B进行,2个OH*发生歧化反应.比较3种团簇上的最佳反应路径发现,Au12Cu团簇对WGSR表现出较好的催化活性. 展开更多
关键词 密度泛函理论 Au12M团簇 水煤气变换反应 氧化还原机理 羧基机理
下载PDF
新型钴钼系耐硫变换催化剂本征动力学 被引量:2
17
作者 冯云飞 江莉龙 +3 位作者 曹彦宁 张惠云 马永德 林诚 《工业催化》 CAS 2013年第2期32-37,共6页
采用等温管式积分反应器,在(550~750)K、(2.0~3.5)MPa和空速(15~30)L.(g.h)-1条件下,对新型钴钼系耐硫变换催化剂进行变换反应本征动力学研究。建立了包含压力项的幂函数型动力学模型,根据实验测定数据,结合具有全局寻优能力微粒群... 采用等温管式积分反应器,在(550~750)K、(2.0~3.5)MPa和空速(15~30)L.(g.h)-1条件下,对新型钴钼系耐硫变换催化剂进行变换反应本征动力学研究。建立了包含压力项的幂函数型动力学模型,根据实验测定数据,结合具有全局寻优能力微粒群算法和求解微分方程的龙格-库塔法,通过迭代寻优对变换反应动力学模型进行参数估计,获得高度显著、可信的动力学模型:r=-(dNCO)/(dW)=39981.876exp(-(68424.0)/(RT))PCO0.4176PH2O0.9297PCO2-0.5516PH2-0.7503(1-β)。结果表明,在催化剂上进行变换反应时,反应速率对CO组分分压变化的敏感性较低,H2O组分分压对反应速率的影响较大,高汽气比下催化活性较高。 展开更多
关键词 化学动力学 变换反应 钴钼系耐硫催化剂 本征动力学 微粒群算法 龙格-库塔法 动力学模型
下载PDF
The highly selective catalytic hydrogenation of CO_(2)to CO over transition metal nitrides
18
作者 Yichao Wu Zhiwei Xie +6 位作者 Xiaofeng Gao Xian Zhou Yangzhi Xu Shurui Fan Siyu Yao Xiaonian Li Lili Lin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第3期248-254,共7页
Three transition metal-like facet centered cubic structured transition metal nitrides,γ-Mo_(2)N,β-W_(2)N andδ-NbN,are synthesized and applied in the reaction of CO_(2)hydrogenation to CO.Among the three nitride cat... Three transition metal-like facet centered cubic structured transition metal nitrides,γ-Mo_(2)N,β-W_(2)N andδ-NbN,are synthesized and applied in the reaction of CO_(2)hydrogenation to CO.Among the three nitride catalysts,theγ-Mo_(2)N exhibits superior activity to target product CO,which is 4.6 and 76 times higher than the other two counterparts ofβ-W_(2)N andδ-NbN at 600℃,respectively.Additionally,γ-Mo_(2)N exhibits excellent stability on both cyclic heating-cooling and high space velocity steady state operation.The deactivation degree of cyclic heating-cooling evaluation after 5 cycles and long-term stability performance at 773 and 873 K in 50 h are all less than 10%.In-situ XRD and kinetic studies suggest that theγ-Mo_(2)N itself is able to activate both of the reactants CO_(2)and H_(2).Below 400℃,the reaction mainly occurs at the surface ofγ-Mo_(2)N catalyst.CO_(2)and H_(2)competitively adsorbe on the surface of catalyst and CO_(2)is the relatively stronger surface adsorbate.At a higher temperature,the interstitial vacancies of theγ-Mo_(2)N can be reversibly filled with the oxygen from CO_(2)dissociation.Both of the surface and bulk phase sites ofγ-Mo_(2)N participate in the high temperature CO_(2)hydrogenation pathway. 展开更多
关键词 Carbon dioxide Chemical reaction CATALYSIS Reverse water gas shift(RWGS)reaction Transition metal nitride In-situ X-ray diffraction characterization
下载PDF
基于FLUENT水气变换反应在多孔介质内的两温度模型 被引量:9
19
作者 龙回龙 许明杰 +2 位作者 于东华 丁扬 王克峰 《计算机与应用化学》 CAS CSCD 北大核心 2012年第8期981-985,共5页
利用计算流体力学(CFD)方法建立了一个耦合低温水气变换反应的多孔介质二维拟均相反应器模型。采用FLUENT缺省的单温度模型进行模拟,无法得到气固相两相的温度,而且温度场与实际不符。通过用户自定义标量(UDS)添加固相能量方程,将多孔... 利用计算流体力学(CFD)方法建立了一个耦合低温水气变换反应的多孔介质二维拟均相反应器模型。采用FLUENT缺省的单温度模型进行模拟,无法得到气固相两相的温度,而且温度场与实际不符。通过用户自定义标量(UDS)添加固相能量方程,将多孔介质的单温度模型修正为气固相耦合传热两温度模型,以源项的形式添加化学反应,将化学反应热添加到气固相能量方程。湍流模型采用Spalart-Allmaras方程,动力学模型采用Langmuir-Hin shelwood方程,催化剂的性质及操作条件以Wei-Hsin Chen等的实验为基础。采用有限体积法对模型进行非稳态模拟,对反应器内组分浓度、速度场及温度进行了可视化分析。最后列出了非稳态两温度模型在3个时间点的轴向温度曲线,并且与FLUENT缺省的单温度模型进行了对比,两温度模型的结果与实际更相符。 展开更多
关键词 FLUENT 计算流体力学 水气变换反应 多孔介质 两温度模型
原文传递
A Lamellar Ceria Structure with Encapsulated Platinum Nanoparticles 被引量:5
20
作者 Angelo C.Mak Changlin Yu +2 位作者 Jimmy C.Yu Zhendong Zhang Chunman Ho 《Nano Research》 SCIE EI CSCD 2008年第6期474-482,共9页
A novel lamellar feather-like CeO_(2) structure has been fabricated by using a triblock copolymer as the structure-directing agent.This material was characterized in detail by X-ray diffraction,scanning electron micro... A novel lamellar feather-like CeO_(2) structure has been fabricated by using a triblock copolymer as the structure-directing agent.This material was characterized in detail by X-ray diffraction,scanning electron microscopy,transmission electron microscopy,X-ray photoelectron spectroscopy,and BET surface area measurements.Compared with conventional spherical shaped ceria prepared by ammonia gelation,the ceria feathers have superior ability to support nanosized platinum particles due to their special structure.The“skeletons”of ceria feathers can serve as an ideal host matrix to anchor the platinum particles.Furthermore,the inter-crossing pattern of the“skeletons”also acts as a partition to separate platinum particles,allowing the Pt nanoparticles(average diameter~6 nm)to be highly dispersed in the structure.The Pt/feather-like CeO_(2) catalyst exhibits high activity in the water gas shift reaction. 展开更多
关键词 CERIA NANOSTRUCTURE PLATINUM nanoparticles surfactant-controlled synthesis water gas shift reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部