Portal water injection sheet pile (PWISP), as a retaining wall, appeared in seashore engineering in 2000. Although there have been many systematic methods addressing the issue, there are very few focusing on the new s...Portal water injection sheet pile (PWISP), as a retaining wall, appeared in seashore engineering in 2000. Although there have been many systematic methods addressing the issue, there are very few focusing on the new structure because of the difficulties in defining the earth pressure between the two piles. A new method is proposed in this paper to obtain the earth pressure between the PWISPs. Stability analysis against overturning follows as a consequence. Using Finite Element Analysis (FEA) software ANSYS, both the nonlinear characteristics of the soil and those of the contact elements are taken into account to obtain the earth pressure distribution on the contact surface. Based on the results of the FEA, Rankin’s theory and the slip plane theory, the formula of the earth pressure on the inner surfaces between the piles is given. Assuming the PWISP as the analysis object and the earth pressure as an outside force acting upon it, the equation of stability against overturning of the PWISP is presented. Finally, some parameters are discussed about the stability of the PWISP against overturning, such as the embedded depth of the front pile, the distance between the two rows of piles, the internal friction angle and the cohesion of the earth. The results show that the increase of the cohesion and the internal friction angle will decrease the distance and the embedded depth, and therefore enhance the stability against overturning. Specifically, when the distance is 1/3-2/3 of the maximal excavation depth, the two rows of piles give the best performance in stability.展开更多
To further the study on the newly developed portal water injection sheet pile under static loads, in this paper, by adopting the nonlinear calculation module of FEM software ANSYS, a model for the interaction between ...To further the study on the newly developed portal water injection sheet pile under static loads, in this paper, by adopting the nonlinear calculation module of FEM software ANSYS, a model for the interaction between the soil and the sheet piles is set up, and the seismic response analysis for this type of space-retaining structure is performed. The effects of the embedded depth and the distance between the front pile and the back pile on the dynamic characteristics of the portal water injection sheet pile are studied.展开更多
文摘Portal water injection sheet pile (PWISP), as a retaining wall, appeared in seashore engineering in 2000. Although there have been many systematic methods addressing the issue, there are very few focusing on the new structure because of the difficulties in defining the earth pressure between the two piles. A new method is proposed in this paper to obtain the earth pressure between the PWISPs. Stability analysis against overturning follows as a consequence. Using Finite Element Analysis (FEA) software ANSYS, both the nonlinear characteristics of the soil and those of the contact elements are taken into account to obtain the earth pressure distribution on the contact surface. Based on the results of the FEA, Rankin’s theory and the slip plane theory, the formula of the earth pressure on the inner surfaces between the piles is given. Assuming the PWISP as the analysis object and the earth pressure as an outside force acting upon it, the equation of stability against overturning of the PWISP is presented. Finally, some parameters are discussed about the stability of the PWISP against overturning, such as the embedded depth of the front pile, the distance between the two rows of piles, the internal friction angle and the cohesion of the earth. The results show that the increase of the cohesion and the internal friction angle will decrease the distance and the embedded depth, and therefore enhance the stability against overturning. Specifically, when the distance is 1/3-2/3 of the maximal excavation depth, the two rows of piles give the best performance in stability.
文摘To further the study on the newly developed portal water injection sheet pile under static loads, in this paper, by adopting the nonlinear calculation module of FEM software ANSYS, a model for the interaction between the soil and the sheet piles is set up, and the seismic response analysis for this type of space-retaining structure is performed. The effects of the embedded depth and the distance between the front pile and the back pile on the dynamic characteristics of the portal water injection sheet pile are studied.