Water inrush is one of the most dangerous disasters in coal mining.Due to the large-scale mining and complicated hydrogeological conditions,thousands of deaths and huge economic losses have been caused by water inrush...Water inrush is one of the most dangerous disasters in coal mining.Due to the large-scale mining and complicated hydrogeological conditions,thousands of deaths and huge economic losses have been caused by water inrush disasters in China.There are two main factors determining the occurrence of water inrush:water source and water-conducting pathway.Research on the formation mechanism of the water-conducting pathway is the main direction to prevent and control the water inrush,and the seepage mechanism of rock mass during the formation of the water-conducting pathway is the key for the research on the water inrush mechanism.This paper provides a state-of-the-art review of seepage mechanisms during water inrush from three aspects,i.e.,mechanisms of stress-seepage coupling,fow regime transformation and rock erosion.Through numerical methods and experimental analysis,the evolution law of stress and seepage felds in the process of water inrush is fully studied;the fuid movement characteristics under diferent fow regimes are clearly summarized;the law of particle initiation and migration in the process of water inrush is explored,and the efect of rock erosion on hydraulic and mechanical properties of the rock media is also studied.Finally,some limitations of current research are analyzed,and the suggestions for future research on water inrush are proposed in this review.展开更多
Correct identification of water inrush sources is particularly important to prevent and control mine water disasters.Hydrochemical analysis,Fisher discriminant analysis,and geothermal verification analysis were used t...Correct identification of water inrush sources is particularly important to prevent and control mine water disasters.Hydrochemical analysis,Fisher discriminant analysis,and geothermal verification analysis were used to identify and verify the water sources of the multi-aquifer groundwater system in Gubei coal mine,Anhui Province,North China.Results show that hydrochemical water types of the Cenozoic top aquifer included HCO3-Na+K-Ca,HCO3-Na+K-Mg and HCO3-Na+K,and this aquifer was easily distinguishable from other aquifers because of its low concentration of Na++K+and Cl-.The Cenozoic middle and bottom aquifers,the Permian fissure aquifer,and the Taiyuan and Ordovician limestone aquifers were mainly characterized by the Cl-Na+K and SO4-Cl-Na+K or HCO3-Cl-Na+K water types,and their hydrogeochemistries were similar.Therefore,water sources could not be identified via hydrochemical analysis.Fisher model was established based on the hydrogeochemical characteristics,and its discrimination rate was 89.19%.Fisher discrimination results were improved by combining them with the geothermal analysis results,and this combination increased the identification rate to 97.3%and reasonably explained the reasons behind two water samples misjudgments.The methods described herein are also applicable to other mines with similar geological and hydrogeological conditions in North China.展开更多
In this paper, a combination of field measurement, theoretical analysis and numerical simulation were used to study the main control factors of coal mine water inrush in a main aquifer coal seam and its control scheme...In this paper, a combination of field measurement, theoretical analysis and numerical simulation were used to study the main control factors of coal mine water inrush in a main aquifer coal seam and its control scheme. On the basis of revealing and analyzing the coal seam as the main aquifer in western coal mine of Xiao Jihan coal mine, the simulation software of PHASE-2D was applied to analyze the water inflow under different influencing factors. The results showed that water inflow increases logarithmically with the coal seam thickness, increases as a power function with the permeability coefficient of the coal seam, and increases linearly with the coal seam burial depth and the head pressure; The evaluation model for the factors of coal seam water inrush was gained by using nonlinear regression analysis with SPSS. The mine water inrush risk evaluation partition within the scope of the mining field was obtained,through the engineering application in Xiao Jihan coal mine. To ensure the safe and efficient production of the mine, we studied the coal mine water disaster prevention and control measures of a main aquifer coal seam in aspects of roadway driving and coal seam mining.展开更多
Xin’an coal mine, Henan Province, faces the risk of water inrush because 40% of the area of the coal mine is under the surface water of the Xiaolangdi reservoir. To forecast water disaster, an effective aquifuge and ...Xin’an coal mine, Henan Province, faces the risk of water inrush because 40% of the area of the coal mine is under the surface water of the Xiaolangdi reservoir. To forecast water disaster, an effective aquifuge and a limit of water infiltration were determined by rock-phase analysis and long term observations of surface water and groundwater. By field monitoring, as well as physical and numerical simulation experiments, we obtained data reflecting different heights of a water flow fractured zone (WFFZ) under different mining conditions, derived a formula to calculate this height and built a forecasting model with the aid of GIS. On the basis of these activities, the coal mine area was classified into three sub-areas with different potential of water inrush. In the end, our research results have been applied in and verified by industrial mining experiments at three working faces and we were able to present a successful example of coal mining under a large reservoir.展开更多
It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failu...It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs.展开更多
With the gradual depletion of shallow coal resources,the Yanzhou mine in China will enter the lower coal seam mining phase.However,as mining depth increases,lower coal seam mining in Yanzhou is threatened by water inr...With the gradual depletion of shallow coal resources,the Yanzhou mine in China will enter the lower coal seam mining phase.However,as mining depth increases,lower coal seam mining in Yanzhou is threatened by water inrush in the Benxi Formation limestone and Ordovician limestone.The existing prediction models for the water burst at the bottom of the coal seam are less accurate than expected owing to various controlling factors and their intrinsic links.By analyzing the hydrogeological exploration data of the Baodian lower seam and combining the results of the water inrush coefficient method and the Yanzhou mine pressure seepage test,an evaluation model of the seepage barrier capacity of the fault was established.The evaluation results show the water of the underlying limestone aquifer in the Baodian mine area mainly threatens the lower coal mining through the fault fracture zone.The security of mining above confined aquifer in the Baodian mine area gradually decreases from southwest to northeast.By comparing the water inrush coefficient method and the evaluation model of fault impermeability,the results show the evaluation model based on seepage barrier conditions is closer to the actual situation when analyzing the water breakout situation at the working face.展开更多
Directing at the non-linear dynamic characteristics of water inrush from coal seam floor and by the analysis of the shortages of current forecast methods for water inrush from coal seam floor, a new forecast method wa...Directing at the non-linear dynamic characteristics of water inrush from coal seam floor and by the analysis of the shortages of current forecast methods for water inrush from coal seam floor, a new forecast method was raised based on wavelet neural network (WNN) that was a model combining wavelet function with artificial neural network. Firstly basic principle of WNN was described, then a forecast model for water inrush from coal seam floor based on WNN was established and analyzed, finally an example of forecasting the quantity of water inrush from coal floor was illustrated to verify the feasibility and superiority of this method. Conclusions show that the forecast result based on WNN is more precise and that using WNN model to forecast the quantity of water inrush from coal seam floor is feasible and practical.展开更多
The study of flow behaviour of water-sand mixtures in fractured rocks is of great necessity to understand the producing mechanism and prevention of water inrush and sand gushing accidents.A self-developed seepage test...The study of flow behaviour of water-sand mixtures in fractured rocks is of great necessity to understand the producing mechanism and prevention of water inrush and sand gushing accidents.A self-developed seepage test system is used in this paper to conduct laboratory experiments in order to study the influence of the particle size distribution,the void ratio,and the initial mass of Aeolian sand on the flow behavior.It is concluded that the water flow velocity is insensitive to the initial mass of the Aeolian sand but increases with the power exponent in the Talbot formula and the specimen height.The outflow of the Aeolian sand increases with the power exponent in the Talbot formula,the specimen height,and the initial mass of the Aeolian sand.Besides,the outflow of the Aeolian sand changes exponentially with the water flow velocity.Finally,it is found that the fractured specimen has a maximum sand filtration capacity beyond which the outflow of the Aeolian sand significantly increases with the initial mass of the Aeolian sand.展开更多
With the aim to apply the electric fish into practice to assist coal mine water disaster life detection and rescue work, based on the analysis on swing propulsion movements of tail fin, this paper integrates the elect...With the aim to apply the electric fish into practice to assist coal mine water disaster life detection and rescue work, based on the analysis on swing propulsion movements of tail fin, this paper integrates the electromagnet technology with tail fin drive system by analyzing how the fish swims with tail fin under the law of progression. The principle, structure, and drive signals of tail fin electromagnetic drive are researched, the enforced situation of fish under eIectromagnetic driving modes are analyzed, and the experimental plat-form of tail fin electromagnetic drive is established. The best distance between electro- magnet and armature, which can realize the swing of tail fin, was researched in the experiment under water. The robotic fish structure parameters of tail fin electromagnetic drive was finalized by theoretical analysis and experimental measurement.展开更多
奥灰岩溶裂隙含水层是影响华北型煤矿深部开采的重要水害,在水-岩相互作用下奥灰含水层易导致煤层底板突水。为进一步认识奥灰岩溶突水问题,文章以新集矿区深部1煤层开采为例,利用矿区近些年最新积累的奥灰钻孔资料,选取断层强度指数、...奥灰岩溶裂隙含水层是影响华北型煤矿深部开采的重要水害,在水-岩相互作用下奥灰含水层易导致煤层底板突水。为进一步认识奥灰岩溶突水问题,文章以新集矿区深部1煤层开采为例,利用矿区近些年最新积累的奥灰钻孔资料,选取断层强度指数、断层交叉点与尖灭点、含水层水压、富水性、隔水层等效厚度、脆塑比7个因素作为奥灰岩溶突水的主控因素,并结合层次分析法(analytic hierarchy process,AHP)确定各主控因素影响权重。运用地理信息系统(geographic information system,GIS)空间分析功能建立各主控因素专题图,通过对专题栅格图归一化处理,将各主控因素按照权重进行空间复合叠加,最终获得1煤层底板奥灰岩溶突水危险性评价分区结果。将评价结果与突水系数法计算结果对比分析可知,基于GIS的煤层底板突水危险性评价方法更符合矿区实际地质情况,可以为矿区深部煤层开采与水害防治工作提供参考依据。展开更多
基金supported by the National Science Foundation for Excellent Young researchers of China(52122404)the National Natural Science Foundation of China(41977238)the Fundamental Research Funds for the Central Universities(2021GJZPY14 and 2021YCPY0101).
文摘Water inrush is one of the most dangerous disasters in coal mining.Due to the large-scale mining and complicated hydrogeological conditions,thousands of deaths and huge economic losses have been caused by water inrush disasters in China.There are two main factors determining the occurrence of water inrush:water source and water-conducting pathway.Research on the formation mechanism of the water-conducting pathway is the main direction to prevent and control the water inrush,and the seepage mechanism of rock mass during the formation of the water-conducting pathway is the key for the research on the water inrush mechanism.This paper provides a state-of-the-art review of seepage mechanisms during water inrush from three aspects,i.e.,mechanisms of stress-seepage coupling,fow regime transformation and rock erosion.Through numerical methods and experimental analysis,the evolution law of stress and seepage felds in the process of water inrush is fully studied;the fuid movement characteristics under diferent fow regimes are clearly summarized;the law of particle initiation and migration in the process of water inrush is explored,and the efect of rock erosion on hydraulic and mechanical properties of the rock media is also studied.Finally,some limitations of current research are analyzed,and the suggestions for future research on water inrush are proposed in this review.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41572147)
文摘Correct identification of water inrush sources is particularly important to prevent and control mine water disasters.Hydrochemical analysis,Fisher discriminant analysis,and geothermal verification analysis were used to identify and verify the water sources of the multi-aquifer groundwater system in Gubei coal mine,Anhui Province,North China.Results show that hydrochemical water types of the Cenozoic top aquifer included HCO3-Na+K-Ca,HCO3-Na+K-Mg and HCO3-Na+K,and this aquifer was easily distinguishable from other aquifers because of its low concentration of Na++K+and Cl-.The Cenozoic middle and bottom aquifers,the Permian fissure aquifer,and the Taiyuan and Ordovician limestone aquifers were mainly characterized by the Cl-Na+K and SO4-Cl-Na+K or HCO3-Cl-Na+K water types,and their hydrogeochemistries were similar.Therefore,water sources could not be identified via hydrochemical analysis.Fisher model was established based on the hydrogeochemical characteristics,and its discrimination rate was 89.19%.Fisher discrimination results were improved by combining them with the geothermal analysis results,and this combination increased the identification rate to 97.3%and reasonably explained the reasons behind two water samples misjudgments.The methods described herein are also applicable to other mines with similar geological and hydrogeological conditions in North China.
基金provided by the National Key Basic Research Program of China (No. 2013CB227905)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 51421003)the Jiangsu Province Ordinary University Graduate Student Scientific Research Innovation Projects (No. KYLX16_0564)
文摘In this paper, a combination of field measurement, theoretical analysis and numerical simulation were used to study the main control factors of coal mine water inrush in a main aquifer coal seam and its control scheme. On the basis of revealing and analyzing the coal seam as the main aquifer in western coal mine of Xiao Jihan coal mine, the simulation software of PHASE-2D was applied to analyze the water inflow under different influencing factors. The results showed that water inflow increases logarithmically with the coal seam thickness, increases as a power function with the permeability coefficient of the coal seam, and increases linearly with the coal seam burial depth and the head pressure; The evaluation model for the factors of coal seam water inrush was gained by using nonlinear regression analysis with SPSS. The mine water inrush risk evaluation partition within the scope of the mining field was obtained,through the engineering application in Xiao Jihan coal mine. To ensure the safe and efficient production of the mine, we studied the coal mine water disaster prevention and control measures of a main aquifer coal seam in aspects of roadway driving and coal seam mining.
基金Project 2007CB209400 supported by the National Basic Research Program of China
文摘Xin’an coal mine, Henan Province, faces the risk of water inrush because 40% of the area of the coal mine is under the surface water of the Xiaolangdi reservoir. To forecast water disaster, an effective aquifuge and a limit of water infiltration were determined by rock-phase analysis and long term observations of surface water and groundwater. By field monitoring, as well as physical and numerical simulation experiments, we obtained data reflecting different heights of a water flow fractured zone (WFFZ) under different mining conditions, derived a formula to calculate this height and built a forecasting model with the aid of GIS. On the basis of these activities, the coal mine area was classified into three sub-areas with different potential of water inrush. In the end, our research results have been applied in and verified by industrial mining experiments at three working faces and we were able to present a successful example of coal mining under a large reservoir.
基金the National Basic Research Program of China(No.2007CB209401) for its financial support
文摘It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs.
基金financial support from the National Natural Science Foundation of China(No.41702326)the Jiangxi Provincial Natural Science Foundation(No.20202ACB214006)+2 种基金the Innovative Experts,Long-term Program of Jiangxi Province(No.jxsq2018106049)the Supported by Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technologythe Innovation Fund Designated for Graduate Students of Jiangxi Province(No.YC2020-S451)。
文摘With the gradual depletion of shallow coal resources,the Yanzhou mine in China will enter the lower coal seam mining phase.However,as mining depth increases,lower coal seam mining in Yanzhou is threatened by water inrush in the Benxi Formation limestone and Ordovician limestone.The existing prediction models for the water burst at the bottom of the coal seam are less accurate than expected owing to various controlling factors and their intrinsic links.By analyzing the hydrogeological exploration data of the Baodian lower seam and combining the results of the water inrush coefficient method and the Yanzhou mine pressure seepage test,an evaluation model of the seepage barrier capacity of the fault was established.The evaluation results show the water of the underlying limestone aquifer in the Baodian mine area mainly threatens the lower coal mining through the fault fracture zone.The security of mining above confined aquifer in the Baodian mine area gradually decreases from southwest to northeast.By comparing the water inrush coefficient method and the evaluation model of fault impermeability,the results show the evaluation model based on seepage barrier conditions is closer to the actual situation when analyzing the water breakout situation at the working face.
文摘Directing at the non-linear dynamic characteristics of water inrush from coal seam floor and by the analysis of the shortages of current forecast methods for water inrush from coal seam floor, a new forecast method was raised based on wavelet neural network (WNN) that was a model combining wavelet function with artificial neural network. Firstly basic principle of WNN was described, then a forecast model for water inrush from coal seam floor based on WNN was established and analyzed, finally an example of forecasting the quantity of water inrush from coal floor was illustrated to verify the feasibility and superiority of this method. Conclusions show that the forecast result based on WNN is more precise and that using WNN model to forecast the quantity of water inrush from coal seam floor is feasible and practical.
基金financially supported by the National Natural Science Foundation of China(Nos.41807209,51778215,51708185,and 51974293)the Young Teacher Foundation of HPU(No.2019XQG-19)+3 种基金the Henan Provincial Youth Talent Promotion Program(No.2020HYTP003)the Jiangsu Province Science Foundation for Youths(No.BK20180658)the Doctor Foundation of Henan Polytechnic University(Nos.B2017-51 and B2017-53)China Postdoctoral Science Foundation(No.2018M632422)。
文摘The study of flow behaviour of water-sand mixtures in fractured rocks is of great necessity to understand the producing mechanism and prevention of water inrush and sand gushing accidents.A self-developed seepage test system is used in this paper to conduct laboratory experiments in order to study the influence of the particle size distribution,the void ratio,and the initial mass of Aeolian sand on the flow behavior.It is concluded that the water flow velocity is insensitive to the initial mass of the Aeolian sand but increases with the power exponent in the Talbot formula and the specimen height.The outflow of the Aeolian sand increases with the power exponent in the Talbot formula,the specimen height,and the initial mass of the Aeolian sand.Besides,the outflow of the Aeolian sand changes exponentially with the water flow velocity.Finally,it is found that the fractured specimen has a maximum sand filtration capacity beyond which the outflow of the Aeolian sand significantly increases with the initial mass of the Aeolian sand.
文摘With the aim to apply the electric fish into practice to assist coal mine water disaster life detection and rescue work, based on the analysis on swing propulsion movements of tail fin, this paper integrates the electromagnet technology with tail fin drive system by analyzing how the fish swims with tail fin under the law of progression. The principle, structure, and drive signals of tail fin electromagnetic drive are researched, the enforced situation of fish under eIectromagnetic driving modes are analyzed, and the experimental plat-form of tail fin electromagnetic drive is established. The best distance between electro- magnet and armature, which can realize the swing of tail fin, was researched in the experiment under water. The robotic fish structure parameters of tail fin electromagnetic drive was finalized by theoretical analysis and experimental measurement.
文摘奥灰岩溶裂隙含水层是影响华北型煤矿深部开采的重要水害,在水-岩相互作用下奥灰含水层易导致煤层底板突水。为进一步认识奥灰岩溶突水问题,文章以新集矿区深部1煤层开采为例,利用矿区近些年最新积累的奥灰钻孔资料,选取断层强度指数、断层交叉点与尖灭点、含水层水压、富水性、隔水层等效厚度、脆塑比7个因素作为奥灰岩溶突水的主控因素,并结合层次分析法(analytic hierarchy process,AHP)确定各主控因素影响权重。运用地理信息系统(geographic information system,GIS)空间分析功能建立各主控因素专题图,通过对专题栅格图归一化处理,将各主控因素按照权重进行空间复合叠加,最终获得1煤层底板奥灰岩溶突水危险性评价分区结果。将评价结果与突水系数法计算结果对比分析可知,基于GIS的煤层底板突水危险性评价方法更符合矿区实际地质情况,可以为矿区深部煤层开采与水害防治工作提供参考依据。