期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Effects of water application intensity of micro-sprinkler irrigation and soil salinity on environment of coastal saline soils 被引量:1
1
作者 Lin-lin Chu Yao-hu Kang Shu-qin Wan 《Water Science and Engineering》 EI CAS CSCD 2020年第2期116-123,共8页
To achieve the greatest leaching efficiency,water movement must occur under unsaturated flow conditions.Accordingly,the water application intensity of irrigation must be chosen carefully.The aim of this study was to e... To achieve the greatest leaching efficiency,water movement must occur under unsaturated flow conditions.Accordingly,the water application intensity of irrigation must be chosen carefully.The aim of this study was to evaluate the impact of the water application intensity of micro-sprinkler irrigation on coastal saline soil with different salt contents.To achieve this objective,a laboratory experiment was conducted with three soil salinity treatments(2.26,10.13,and 22.29 dS/m)and three water application intensity treatments(3.05,5.19,and 7.23 mm/h).The results showed that the effect of soil salinity on soil water content,electrical conductivity,and pH was significant,and the effect of the water application intensity was insignificant.High soil water content was present in the 40e60 cm profile in all soil salinity treatments,and the content was higher in the medium and high water application intensity treatments than in the low-intensity treatment.Significant salt leaching occurred in all treatments,and the effect was stronger in the high soil salinity treatment and medium water application intensity treatment.In the medium and high soil salinity treatments,pH exhibited a decreasing trend,with no trend change in the low soil salinity treatment,and the pH value was higher in the medium water application intensity treatment than in the other two treatments.These results indicated that the three intensities evaluated had no statistically different effect on the electrical conductivity of saturated soil-paste extracts(EC)in the upper 20 cm of the soil profile,and it would be better to maintain a lower value of the water application intensity. 展开更多
关键词 Soil water content Salinity Micro-sprinkler irrigation water application intensity Saline soil environment
下载PDF
Effects of water application intensity of microsprinkler irrigation on water and salt environment and crop growth in coastal saline soils 被引量:4
2
作者 CHU Lin-lin KANG Yao-hu WAN Shu-qin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第10期2077-2089,共13页
Laboratory and field experiments were conducted to investigate the effects of water application intensity(WAI) on soil salinity management and the growth of Festuca arundinacea(festuca) under three stages of water... Laboratory and field experiments were conducted to investigate the effects of water application intensity(WAI) on soil salinity management and the growth of Festuca arundinacea(festuca) under three stages of water and salt management strategies using microsprinkler irrigation in Hebei Province, North China. The soil water content(è) and salinity of homogeneous coastal saline soils were evaluated under different water application intensities in the laboratory experiment. The results indicated that the WAI of microsprinkler irrigation influenced the è, electrical conductivity(ECe) and p H of saline soils. As the WAI increased, the average values of è and ECe in the 0–40 cm profile also increased, while their average values in the 40–60 cm profile decreased. The p H value also slightly decreased as depth increased, but no significant differences were observed between the different treatments. The time periods of the water redistribution treatments had no obvious effects. Based on the results for è, ECe and p H, a smaller WAI was more desirable. The field experiment was conducted after being considered the results of the technical parameter experiment and evaporation, wind and leaching duration. The field experiment included three stages of water and salt regulation, based on three soil matric potentials(SMP), in which the SMP at a 20-cm depth below the surface was used to trigger irrigation. The results showed that the microsprinkler irrigation created an appropriate environment for festuca growth through the three stages of water and salt regulation. The low-salinity conditions that occurred at 0–10 cm depth during the first stage(-5 k Pa) continued to expand through the next two stages. The average p H value was less than 8.5. The tiller number of festuca increased as SMP decreased from the first stage to the third stage. After the three stages of water and salt regulation, the highly saline soil gradually changed to a low-saline soil. Overall, based on the salt desalinization, the microsprinkler irrigation and three stages of water and salt regulation could be successfully used to cultivate plants for the reclamation of coastal saline land in North China. 展开更多
关键词 coastal saline soil microsprinkler irrigation water application intensity soil salinity water and salt regulation reclamation
下载PDF
Spatiotemporal changes and influencing factors of the intensity of agricultural water footprint in Xinjiang, China
3
作者 Yanyun Wang Aihua Long +8 位作者 Xiaoya Deng Abuduaini Abulizi Jie Wang Pei Zhang Yang Hai Cai Ren Ji Zhang Yundong Liu Weiming Zhao 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第3期262-272,共11页
Xinjiang Uygur Autonomous Region,the largest agricultural high-efficiency water-saving arid area in China,was adopted to explore the coupling relationship between agricultural water consumption and economic benefits,w... Xinjiang Uygur Autonomous Region,the largest agricultural high-efficiency water-saving arid area in China,was adopted to explore the coupling relationship between agricultural water consumption and economic benefits,which is of great significance to guiding the efficient utilization and sustainable development of agricultural water resources.This study utilizes an indicator,termed the Agricultural Water Footprint Intensity(short as AWFI,which means the amount of water resource consumed per unit of agricultural GDP),to study the economic benefits of agricultural water in Xinjiang from 1991-2018.In addition,the Theil index,a measure of the imbalance between individuals or regions,was used to study the evolution in the spatial differences in water efficiency,and the Logarithmic Mean Divisia Index(LMDI)method was applied to quantify the factors driving the AWFI.The results showed that AWFI in Xinjiang has experienced three stages:obvious decline,stable and slow decline,which decreased from 16114 m^(3)/10^(4) CNY to 2100 m^(3)/10^(4) CNY,decreasing by 86.97%.The Theil index indicated that the spatial evolution of 14 prefectures(cities)resembled an inverted N-shaped Kuznets curve over time.Among the influencing factors,the contributions of water-saving technology and planting structure to the change in the AWFI in Xinjiang,China from 1991 to 2018 were 154.03%and−37.98%,respectively.The total contribution to AWFI of the total population,urbanization rate,and production scale was−16.06%.This study concluded that further improvements in the economic benefits of agricultural water consumption can be obtained by continuing to promote more efficient or“water-conservation”irrigation technologies(engineering aspects),adjusting the planting structure(policy guidance aspects),and intensive management of cultivated land(management aspects). 展开更多
关键词 agricultural water footprint intensity theil index logarithmic mean divisia index XINJIANG
原文传递
Phosphorus losses via surface runoff in rice-wheat cropping systems as impacted by rainfall regimes and fertilizer applications 被引量:8
4
作者 LIU Jian ZUO Qiang +6 位作者 ZHAI Li-mei LUO Chun-yan LIU Hong-bin WANG Hong-yuan LIU Shen ZOU Guo-yuan REN Tian-zhi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第3期667-677,共11页
Phosphorus(P) losses from agricultural soils contribute to eutrophication of surface waters. This field plot study investigated effects of rainfall regimes and P applications on P loss by surface runoff from rice(O... Phosphorus(P) losses from agricultural soils contribute to eutrophication of surface waters. This field plot study investigated effects of rainfall regimes and P applications on P loss by surface runoff from rice(Oryza sativa L.) and wheat(Triticum aestivum L.) cropping systems in Lake Taihu region, China. The study was conducted on two types of paddy soils(Hydromorphic at Anzhen site, Wuxi City, and Degleyed at Xinzhuang site, Changshu City, Jiangsu Province) with different P status, and it covered 3 years with low, high and normal rainfall regimes. Four rates of mineral P fertilizer, i.e., no P(control), 30 kg P ha^(–1) for rice and 20 kg P ha^(–1) for wheat(P_(30+20)), 75 plus 40(P_(75+40)), and 150 plus 80(P_(150+80)), were applied as treatments. Runoff water from individual plots and runoff events was recorded and analyzed for total P and dissolved reactive P concentrations. Losses of total P and dissolved reactive P significantly increased with rainfall depth and P rates(P〈0.0001). Annual total P losses ranged from 0.36–0.92 kg ha^–1 in control to 1.13–4.67 kg ha^–1 in P150+80 at Anzhen, and correspondingly from 0.36–0.48 kg h^–1 to 1.26–1.88 kg ha^–1 at Xinzhuang, with 16–49% of total P as dissolved reactive P. In particular, large amounts of P were lost during heavy rainfall events that occurred shortly after P applications at Anzhen. On average of all P treatments, rice growing season constituted 37–86% of annual total P loss at Anzhen and 28–44% of that at Xinzhuang. In both crop seasons, P concentrations peaked in the first runoff events and decreased with time. During rice growing season, runoff P concentrations positively correlated(P〈0.0001) with P concentrations in field ponding water that was intentionally enclosed by construction of field bund. The relative high P loss during wheat growing season at Xinzhuang was due to high soil P status. In conclusion, P should be applied at rates balancing crop removal(20–30 kg P ha^–1 in this study) and at time excluding heavy rains. Moreover, irrigation and drainage water should be appropriately managed to reduce runoff P losses from rice-wheat cropping systems. 展开更多
关键词 double cropping system intensive agriculture Lake Taihu region phosphorus loss surface runoff water quality
下载PDF
Embodied water analysis for Hebei Province, China by input-output modelling 被引量:1
5
作者 Siyuan LIU Mengyao HAN +4 位作者 Xudong WU Xiaofang WU Zhi LI Xiaohua XIA Xi JI 《Frontiers of Earth Science》 SCIE CAS CSCD 2018年第1期72-85,共14页
With the accelerating coordinated development of the Beijing-Tianjin-Hebei region, regional eco- nomic integration is recognized as a national strategy. As water scarcity places Hebei Province in a dilemma, it is of c... With the accelerating coordinated development of the Beijing-Tianjin-Hebei region, regional eco- nomic integration is recognized as a national strategy. As water scarcity places Hebei Province in a dilemma, it is of critical importance for Hebei Province to balance water resources as well as make full use of its unique advantages in the transition to sustainable development. To our knowledge, related embodied water accounting analysis has been conducted for Beijing and Tianjin, while similar works with the focus on Hebei are not found. In this paper, using the most complete and recent statistics available for Hebei Province, the embodied water use in Hebei Province is analyzed in detail. Based on input-output analysis, it presents a complete set of systems accounting framework for water resources. In addition, a database of embodied water intensity is proposed which is applicable to both intermediate inputs and final demand. The result suggests that the total amount of embodied water in final demand is 10.62 billion m3, of which the water embodied in urban household consumption accounts for more than half. As a net embodied water importer, the water embodied in the commodity trade in Hebei Province is 17.20 billion m3. The outcome of this work implies that it is particularly urgent to adjust industrial structure and trade policies for water conservation, to upgrade technology and to improve water utilization. As a result, to relieve water shortages in Hebei Province, it is of crucial importance to regulate the balance of water use within the province, thus balancing water distribution in the various industrial sectors. 展开更多
关键词 input-output analysis Hebei Province embo-died water embodied water intensity
原文传递
The numerical simulation of the average reverberation intensities in shallow water 被引量:1
6
作者 JIN Guoliang and ZHANG Renhe(Shanghai Acoustics Laboratory , Academia Sinica, Shanghai) 《Chinese Journal of Acoustics》 1990年第1期36-44,共9页
A reverberation model for estimating the average reverberation intensity in layered shallow water is presented.The reverberation intensity is calculated in terms of ray theory for short range and normal mode theory fo... A reverberation model for estimating the average reverberation intensity in layered shallow water is presented.The reverberation intensity is calculated in terms of ray theory for short range and normal mode theory for long range. The calculation accuracy has been improved by taking into account the effect of complex eigenvalues on the incident normal mode field. From the comparison between different scattering models it has been shown that the separable bistatic-backscattering model is acceptable. This makes it possible to calculate reverberation by using only the monostatic-backscattering coefficient and to save greatly the computing time. 展开更多
关键词 The numerical simulation of the average reverberation intensities in shallow water
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部