Changes in water level are one of the important factors controlling the constructive characteristics of deltas.The paper studies the influence of water level changes on sand bodies in the third member of the Shahejie ...Changes in water level are one of the important factors controlling the constructive characteristics of deltas.The paper studies the influence of water level changes on sand bodies in the third member of the Shahejie Formation(Es3)on the gentle southern slope of the Gubei Sag,Bohai Bay Basin and draw some conclusions that,for complex sand bodies,with the increase in water level the distributary channels bifurcate frequently,from a simple branching shape to a network shape along with the increase in the development of crevasse splays,mouth bars and sheet sands.For single sand bodies,with an increase in water level in the slope zone of the lake basin close to the source area,the superimposition style transitioned from vertical cutting-stacking and lateral isolation to vertical stitching,isolation and lateral stitching.However,in the central zone of the lake basin far from the source area,the superimposition style transitioned from vertical stitching and lateral stitching to vertical isolation and lateral isolation.When water level stays stable,the greater the distance from the source area the greater the disaggregation ratio of a single sand body.At the same distance from the source area,higher water level tends to result in greater disaggregation ratio of a single sand body.展开更多
The article is focused on the assessment of changes in the average annual water levels of large lakes of the planet in the changing climate conditions characteristic of the recent decades. Eight large lakes, i.e.Baika...The article is focused on the assessment of changes in the average annual water levels of large lakes of the planet in the changing climate conditions characteristic of the recent decades. Eight large lakes, i.e.Baikal, Balkhash, Superior, Issyk-Kul, Ladoga, Onega, Ontario, and Erie, located on the territory of Eurasia and North America, were chosen as the research objects. They were selected because of the availability of a long-term observations series of the water level. As is known, long-term changes in the lakes water level result from variation in the water volume. The latter depends on the?ratios between the water balance components of the lake that have developed during a given year, which, in turn, reflect the climatic conditions of the respective years. The features of the water balance structure of the above-mentioned?lakes and the intra-annual course of the water level are considered. The available long-term records of observational data on all selected lakes and their stations were divided into two periods: from 1960 to 1979 (the period of stationary climatic situation) and from 1980 to 2008 (the period of non-stationary climatic situation). The homogeneity and significance of trends in the long-term water level series of records have been estimated. It has been established that over the second period the nature and magnitude of the lakes water levels variations differ significantly. For lakes Balkhash, Issyk-Kul, Ladoga, Superior, and Erie, there is a general tendency for a decrease in water levels. For the remaining three lakes (Baikal, Onega, and Ontario), the opposite tendency has been noted: the levels of these lakes increased. Quantitatively, the range of changes in water levels on the lakes in question over the period of 1980-2008 ranged from -4 cm to +26 cm.展开更多
The typical regions of the Taihu Lake Basin,China,were selected to analyze the variation characteristics of river-lake networks under intensive human activities.The characteristics of the fractal dimension of river ne...The typical regions of the Taihu Lake Basin,China,were selected to analyze the variation characteristics of river-lake networks under intensive human activities.The characteristics of the fractal dimension of river networks and lakes for different periods were investigated and the influences of river system evolution on water level changes were further explored through the comparison of their fractal characters.The results are as follows:1) River network development of the study area is becoming more monotonous and more simple;the number of lakes is reducing significantly,and the water surface ratio has dropped significantly since the 1980s.2) The box dimension of the river networks in all the cities of the study area decreased slowly from the 1960s to the 1980s,while the decrease was significant from the 1980s to the 2000s.The variations of lake correlation dimension are similar to those of the river network box dimensions.This is unfavorable for the storage capacity of the river networks and lakes.3) The Hurst exponents of water levels were all between 0.5 and 1.0 from the 1960s to the 1980s,while decreased in the 2000s,indicating the decline in persistence and increase in the complexity of water level series.The paper draws a conclusion that the relationship between the fractal dimension of river-lake networks and the Hurst exponents of the water level series can reveal the impacts of river system changes on flood disasters to some extent:the disappearance of river networks and lakes will increase the possibility of flood occurrence.展开更多
The annual highest water level of Taihu Lake (Zm) is very significant for flood management in the Taihu Basin. This paper first describes the inter-annual and intra-annual traits of Zm from 1956 to 2000. Then, using...The annual highest water level of Taihu Lake (Zm) is very significant for flood management in the Taihu Basin. This paper first describes the inter-annual and intra-annual traits of Zm from 1956 to 2000. Then, using the Mann-Kenall (MK) and Spearman (SP) nonparametric tests, the long-term change trends of area precipitation and pan evaporation in the Taihu Basin are determined. Meanwhile, using the Morlet wavelet transformation, the fluctuation patterns and change points of precipitation and pan evaporation are analyzed. Also, human activities in the Taihu Basin are described, including land use change and hydraulic project construction. Finally, the relationship between Zm, the water level of Taihu Lake 30 days prior to the day of Zm (Z0), and the 30-day total precipitation and pan evaporation prior to the day of Zm (P and E0, respectively) is described based on multi-linear regression equations. The relative influence of climate change and human activities on the change of Zm is quantitatively ascertained. The results demonstrate that: (1) Zm was distinctly higher during the 1980-2000 period than during the 1956-1979 period, and the 30 days prior to the day of Zm are the key phase influencing Zm every year; (2) P increased significantly at a confidence level of 95% during the 1956-2000 period, while the reverse was true for E0; (3) The relationship between Zm, P and E0 distinctly changed after 1980; (4) Climate change and human activities together caused frequent occurrences of high Zm after 1980; (5) Climate change caused a substantially greater Zm difference between the 1956-1979 and 1980-2000 periods than human activities. Climate change, as represented by P and E0, was the dominant factor raising Zm, with a relative influence ratio of 83.6%, while human activities had a smaller influence ratio of 16.4%.展开更多
The humans’ need to use the oceans for exploration and extraction of oil has led to the development of engineering science in the field of offshore structures. Since it’s important to examine the offshore structures...The humans’ need to use the oceans for exploration and extraction of oil has led to the development of engineering science in the field of offshore structures. Since it’s important to examine the offshore structures from different aspects and perspectives, we would have to evaluate many different parameters about them. So categorizing these parameters can help to perform their related analysis with more accuracy and more details. Due to the efficient force it exerts on the structure, the pressure distribution around every marine or hydraulic structure has a significant importance, and it even accounts for one of the dominant issues in designing and building of such structures. In the present study, an oil platform located in Phase 15 of South Pars oil fields, located in the Persian Gulf waters, has been analyzed using the FLOW 3D software. The outputs indicate that the pressure of water is distributed almost hydrostatically with the depth, and its maximum reaches 0.6 MPa at the bottom.展开更多
We study the feature of media changes beneath the Zipingpu reservoir and discuss the process of permeation with the water level rise and fall of the reservoir from January 2005 to January 2008 from ambient noise cross...We study the feature of media changes beneath the Zipingpu reservoir and discuss the process of permeation with the water level rise and fall of the reservoir from January 2005 to January 2008 from ambient noise cross correlation by using continuous seismic data recorded by the stations of Zipingpu seismic network and YZP station. A moving-window cross-spectrum technique has been used to calculate the relative seismic velocity changes between station pairs. Results revealed an obvious relationship between relative seismic velocity, and the water level changes with a time delay that may be caused by permeation during three main impoundments and two large scale disemboguements. Impoundment generates a fast and large impact on the superficial layer, and the changes of seismic velocity is the result of increased pressure and permeation during the impoundment. At the first impoundment, the main effect factor is pressure. During the next two process of impoundment, permeation becomes the main effect factor, affecting the fault at a depth of about 8kin.展开更多
Based on the partial differential equation governing the effect of atmospheric pressure on water level of confined well,deriving the boundary condition and considering the seepage water between well and aquifer,the au...Based on the partial differential equation governing the effect of atmospheric pressure on water level of confined well,deriving the boundary condition and considering the seepage water between well and aquifer,the author obtained the analytical solution of water level change in time domain under the action of an atmospheric pressure history with the Laplace transform method.This solution is composed of two terms:stable and retarded terms.The stable term is the multiplication of barometric efficiency and simultaneous atmospheric pressure,and it implies the value of water level after infinite time when the atmospheric pressure is a constant from the time in question.The retarded term is the transient process due to the time lag of water exchange between well and aquifer.From the solution,it is obtained that the interference of atmospheric pressure on water level is the integral superimposition of the contribution of all atmospheric pressure changes before the time in question.So that,we further found out the response function of pulsive atmospheric pressure history.Calculation shows:① The pulsive response function starts from zero and tends to a steady value,which is proportional to the barometric efficiency,when the time tends to infinity;② The retarded time depends on the mechanical property of aquifer and the radius of well.The larger the seepage coefficient,the smaller the radius of well and the thicker the aquifer,then the shorter the retarded time gets.This solution can be used as the theoretical basis for further analysis of the atmospheric effect and practical correcting method in the future.展开更多
According to loess and palaeosol climatic record, field observation, analysis data and 14C dating, we discuss the climatic changes and the water level fluctuations of Qinghai Lake. It is pointed out that there were fo...According to loess and palaeosol climatic record, field observation, analysis data and 14C dating, we discuss the climatic changes and the water level fluctuations of Qinghai Lake. It is pointed out that there were four relatively warm and moist stages in Qinghai Lake basin during the Holocene. They formed in the periods from 10,300 yr.B.P. to 8,500 yr.B.P., 7,000 yr.B.P. to 3,500 yr.B.P., 2,800 yr.B.P. to 2,000 yr.B.P. and from 1,300 yr.B.P. up to now. The climate in the Holocene optimum period, from 7,000 yr.B.P. to 3,500 yr.B.P., was much warmer and moister than that today. Polypodium plant grew luxuriantly around Qinghai Lake. The annual temperature was 2.5℃ higher than that today, but there was no forest at Qinghai Lake shore. It is found that there was a good relationship between precipitation and water level fluctuation. In warm and moist period water level was high and in the cold and dry period it was low in the Holocene. There were four high water level periods for Qinghai Lake in the展开更多
Long term data record (1944-2018) of climatological conditions in the Lake Kinneret and its watershed ecosystems was statistically evaluated and the impact of Anthropogenic operations was included as well. Precipitati...Long term data record (1944-2018) of climatological conditions in the Lake Kinneret and its watershed ecosystems was statistically evaluated and the impact of Anthropogenic operations was included as well. Precipitation input source is obviously uncontrolled natural component whilst the other three regional water outflows pathways are under anthropogenic control: Evapo-transpiration (ET), Runoff and underground flows. Indications for climate change expressed as air warming with consequences on regional (watershed and the lake) water resources and consumption capacities policy in the drainage basin and in the Lake are discussed. The decline of air temperature from 1940 to 1970s is probably due to a change in the Albedo effect. After the decline air temperature was twisted towards elevation. Climate change caused a decline in rainfall, followed by a reduction of Jordan and other river discharges and underground flows, accompanied by a decline of WL. With respect to climate change, water allocation for agricultural consumption was shrunk.展开更多
Sea level rise due to climate change is a contentious issue with profound geographic and economic implications. One region in the USA identified as being particularly susceptible to seal level rise is the Chesapeake B...Sea level rise due to climate change is a contentious issue with profound geographic and economic implications. One region in the USA identified as being particularly susceptible to seal level rise is the Chesapeake Bay region, and it has been estimated that by the end of the century Norfolk, Virginia could experience sea level rise of 0.75 meters to more than 2.1 meters. Water intrusion is a serious problem in much of the Chesapeake Bay region. The question addressed here is whether this water intrusion is the result of climate-induced seal level rise or is being caused by other factors. Our findings indicate that the water intrusion problems in the region are due not to “sea level rise”, but primarily to land subsidence due to groundwater depletion and, to a lesser extent, subsidence from glacial isostatic adjustment. We conclude that water intrusion will thus continue even if sea levels decline. These findings are critical because the water intrusion problems in the Chesapeake Bay—and elsewhere—cannot be successfully solved unless their causes are correctly identified and appropriate remedies are devised. For the Chesapeake Bay region, the required remedy is the reversal of groundwater withdrawal rates, which has been used successfully elsewhere in the USA and other nations to solve water intrusion problems.展开更多
According to the analysis of the climate materials including the topographic map in 1975, the TM and CBERS satellite remote sensing materials from the 1980s to 2005 as well as the air temperature, precipitation, evapo...According to the analysis of the climate materials including the topographic map in 1975, the TM and CBERS satellite remote sensing materials from the 1980s to 2005 as well as the air temperature, precipitation, evaporation rate, maximum depth of snow and the biggest depth of frozen soil in the past 45 years, the water level area of four lakes at the southeast of Nagqu, Tibet including Barn Co, Pung Co, Dung Co and Nuripung Co show a distinct trend of expansion in the past 30 years. In 2005, the water level area of the above four lakes increased by 48.2 km^2, 38.2 km^2, 19.8 km^2 and 26.0 km^2 respectively compared to 1975, with the respective increase rate of 25.6%, 28.2%, 16.2% and 37.6%. That is closely related to the warming and humidified climate change in the recent years such as rise of the air temperature increase of the precipitation, decrease of the evaporation rate and permafrost degradation.展开更多
基金supported by Research Foundation of China University of Petroleum-Beijing at Karamay(No.XQZX20210004)。
文摘Changes in water level are one of the important factors controlling the constructive characteristics of deltas.The paper studies the influence of water level changes on sand bodies in the third member of the Shahejie Formation(Es3)on the gentle southern slope of the Gubei Sag,Bohai Bay Basin and draw some conclusions that,for complex sand bodies,with the increase in water level the distributary channels bifurcate frequently,from a simple branching shape to a network shape along with the increase in the development of crevasse splays,mouth bars and sheet sands.For single sand bodies,with an increase in water level in the slope zone of the lake basin close to the source area,the superimposition style transitioned from vertical cutting-stacking and lateral isolation to vertical stitching,isolation and lateral stitching.However,in the central zone of the lake basin far from the source area,the superimposition style transitioned from vertical stitching and lateral stitching to vertical isolation and lateral isolation.When water level stays stable,the greater the distance from the source area the greater the disaggregation ratio of a single sand body.At the same distance from the source area,higher water level tends to result in greater disaggregation ratio of a single sand body.
文摘The article is focused on the assessment of changes in the average annual water levels of large lakes of the planet in the changing climate conditions characteristic of the recent decades. Eight large lakes, i.e.Baikal, Balkhash, Superior, Issyk-Kul, Ladoga, Onega, Ontario, and Erie, located on the territory of Eurasia and North America, were chosen as the research objects. They were selected because of the availability of a long-term observations series of the water level. As is known, long-term changes in the lakes water level result from variation in the water volume. The latter depends on the?ratios between the water balance components of the lake that have developed during a given year, which, in turn, reflect the climatic conditions of the respective years. The features of the water balance structure of the above-mentioned?lakes and the intra-annual course of the water level are considered. The available long-term records of observational data on all selected lakes and their stations were divided into two periods: from 1960 to 1979 (the period of stationary climatic situation) and from 1980 to 2008 (the period of non-stationary climatic situation). The homogeneity and significance of trends in the long-term water level series of records have been estimated. It has been established that over the second period the nature and magnitude of the lakes water levels variations differ significantly. For lakes Balkhash, Issyk-Kul, Ladoga, Superior, and Erie, there is a general tendency for a decrease in water levels. For the remaining three lakes (Baikal, Onega, and Ontario), the opposite tendency has been noted: the levels of these lakes increased. Quantitatively, the range of changes in water levels on the lakes in question over the period of 1980-2008 ranged from -4 cm to +26 cm.
基金Under the auspices of Special Fund for Scientific Research in the Public Interestgranted by Ministry of Water Resources(No.2012010072,200701024)+3 种基金Key Program of National Natural Science Foundation of China(No.40730635)Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(No.2011491111)Research Foundation of Nanjing University of Information Science and Technology(No.20100406)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The typical regions of the Taihu Lake Basin,China,were selected to analyze the variation characteristics of river-lake networks under intensive human activities.The characteristics of the fractal dimension of river networks and lakes for different periods were investigated and the influences of river system evolution on water level changes were further explored through the comparison of their fractal characters.The results are as follows:1) River network development of the study area is becoming more monotonous and more simple;the number of lakes is reducing significantly,and the water surface ratio has dropped significantly since the 1980s.2) The box dimension of the river networks in all the cities of the study area decreased slowly from the 1960s to the 1980s,while the decrease was significant from the 1980s to the 2000s.The variations of lake correlation dimension are similar to those of the river network box dimensions.This is unfavorable for the storage capacity of the river networks and lakes.3) The Hurst exponents of water levels were all between 0.5 and 1.0 from the 1960s to the 1980s,while decreased in the 2000s,indicating the decline in persistence and increase in the complexity of water level series.The paper draws a conclusion that the relationship between the fractal dimension of river-lake networks and the Hurst exponents of the water level series can reveal the impacts of river system changes on flood disasters to some extent:the disappearance of river networks and lakes will increase the possibility of flood occurrence.
基金supported by the National Key Technology R & D Program of the Ministry of Science and Technology of China (Grant No. 2006BAB14B01)the Innovation Program of Science and Technology of the Ministry of Water Resources of China (Grant No. XDS2007-04)
文摘The annual highest water level of Taihu Lake (Zm) is very significant for flood management in the Taihu Basin. This paper first describes the inter-annual and intra-annual traits of Zm from 1956 to 2000. Then, using the Mann-Kenall (MK) and Spearman (SP) nonparametric tests, the long-term change trends of area precipitation and pan evaporation in the Taihu Basin are determined. Meanwhile, using the Morlet wavelet transformation, the fluctuation patterns and change points of precipitation and pan evaporation are analyzed. Also, human activities in the Taihu Basin are described, including land use change and hydraulic project construction. Finally, the relationship between Zm, the water level of Taihu Lake 30 days prior to the day of Zm (Z0), and the 30-day total precipitation and pan evaporation prior to the day of Zm (P and E0, respectively) is described based on multi-linear regression equations. The relative influence of climate change and human activities on the change of Zm is quantitatively ascertained. The results demonstrate that: (1) Zm was distinctly higher during the 1980-2000 period than during the 1956-1979 period, and the 30 days prior to the day of Zm are the key phase influencing Zm every year; (2) P increased significantly at a confidence level of 95% during the 1956-2000 period, while the reverse was true for E0; (3) The relationship between Zm, P and E0 distinctly changed after 1980; (4) Climate change and human activities together caused frequent occurrences of high Zm after 1980; (5) Climate change caused a substantially greater Zm difference between the 1956-1979 and 1980-2000 periods than human activities. Climate change, as represented by P and E0, was the dominant factor raising Zm, with a relative influence ratio of 83.6%, while human activities had a smaller influence ratio of 16.4%.
文摘The humans’ need to use the oceans for exploration and extraction of oil has led to the development of engineering science in the field of offshore structures. Since it’s important to examine the offshore structures from different aspects and perspectives, we would have to evaluate many different parameters about them. So categorizing these parameters can help to perform their related analysis with more accuracy and more details. Due to the efficient force it exerts on the structure, the pressure distribution around every marine or hydraulic structure has a significant importance, and it even accounts for one of the dominant issues in designing and building of such structures. In the present study, an oil platform located in Phase 15 of South Pars oil fields, located in the Persian Gulf waters, has been analyzed using the FLOW 3D software. The outputs indicate that the pressure of water is distributed almost hydrostatically with the depth, and its maximum reaches 0.6 MPa at the bottom.
基金sponsored by the National Natural Science Foundation of China (2012BAK1902)
文摘We study the feature of media changes beneath the Zipingpu reservoir and discuss the process of permeation with the water level rise and fall of the reservoir from January 2005 to January 2008 from ambient noise cross correlation by using continuous seismic data recorded by the stations of Zipingpu seismic network and YZP station. A moving-window cross-spectrum technique has been used to calculate the relative seismic velocity changes between station pairs. Results revealed an obvious relationship between relative seismic velocity, and the water level changes with a time delay that may be caused by permeation during three main impoundments and two large scale disemboguements. Impoundment generates a fast and large impact on the superficial layer, and the changes of seismic velocity is the result of increased pressure and permeation during the impoundment. At the first impoundment, the main effect factor is pressure. During the next two process of impoundment, permeation becomes the main effect factor, affecting the fault at a depth of about 8kin.
文摘Based on the partial differential equation governing the effect of atmospheric pressure on water level of confined well,deriving the boundary condition and considering the seepage water between well and aquifer,the author obtained the analytical solution of water level change in time domain under the action of an atmospheric pressure history with the Laplace transform method.This solution is composed of two terms:stable and retarded terms.The stable term is the multiplication of barometric efficiency and simultaneous atmospheric pressure,and it implies the value of water level after infinite time when the atmospheric pressure is a constant from the time in question.The retarded term is the transient process due to the time lag of water exchange between well and aquifer.From the solution,it is obtained that the interference of atmospheric pressure on water level is the integral superimposition of the contribution of all atmospheric pressure changes before the time in question.So that,we further found out the response function of pulsive atmospheric pressure history.Calculation shows:① The pulsive response function starts from zero and tends to a steady value,which is proportional to the barometric efficiency,when the time tends to infinity;② The retarded time depends on the mechanical property of aquifer and the radius of well.The larger the seepage coefficient,the smaller the radius of well and the thicker the aquifer,then the shorter the retarded time gets.This solution can be used as the theoretical basis for further analysis of the atmospheric effect and practical correcting method in the future.
基金This research is supported by Youth Foundation of Natural Science Foundation of China(No.49101015).
文摘According to loess and palaeosol climatic record, field observation, analysis data and 14C dating, we discuss the climatic changes and the water level fluctuations of Qinghai Lake. It is pointed out that there were four relatively warm and moist stages in Qinghai Lake basin during the Holocene. They formed in the periods from 10,300 yr.B.P. to 8,500 yr.B.P., 7,000 yr.B.P. to 3,500 yr.B.P., 2,800 yr.B.P. to 2,000 yr.B.P. and from 1,300 yr.B.P. up to now. The climate in the Holocene optimum period, from 7,000 yr.B.P. to 3,500 yr.B.P., was much warmer and moister than that today. Polypodium plant grew luxuriantly around Qinghai Lake. The annual temperature was 2.5℃ higher than that today, but there was no forest at Qinghai Lake shore. It is found that there was a good relationship between precipitation and water level fluctuation. In warm and moist period water level was high and in the cold and dry period it was low in the Holocene. There were four high water level periods for Qinghai Lake in the
文摘Long term data record (1944-2018) of climatological conditions in the Lake Kinneret and its watershed ecosystems was statistically evaluated and the impact of Anthropogenic operations was included as well. Precipitation input source is obviously uncontrolled natural component whilst the other three regional water outflows pathways are under anthropogenic control: Evapo-transpiration (ET), Runoff and underground flows. Indications for climate change expressed as air warming with consequences on regional (watershed and the lake) water resources and consumption capacities policy in the drainage basin and in the Lake are discussed. The decline of air temperature from 1940 to 1970s is probably due to a change in the Albedo effect. After the decline air temperature was twisted towards elevation. Climate change caused a decline in rainfall, followed by a reduction of Jordan and other river discharges and underground flows, accompanied by a decline of WL. With respect to climate change, water allocation for agricultural consumption was shrunk.
文摘Sea level rise due to climate change is a contentious issue with profound geographic and economic implications. One region in the USA identified as being particularly susceptible to seal level rise is the Chesapeake Bay region, and it has been estimated that by the end of the century Norfolk, Virginia could experience sea level rise of 0.75 meters to more than 2.1 meters. Water intrusion is a serious problem in much of the Chesapeake Bay region. The question addressed here is whether this water intrusion is the result of climate-induced seal level rise or is being caused by other factors. Our findings indicate that the water intrusion problems in the region are due not to “sea level rise”, but primarily to land subsidence due to groundwater depletion and, to a lesser extent, subsidence from glacial isostatic adjustment. We conclude that water intrusion will thus continue even if sea levels decline. These findings are critical because the water intrusion problems in the Chesapeake Bay—and elsewhere—cannot be successfully solved unless their causes are correctly identified and appropriate remedies are devised. For the Chesapeake Bay region, the required remedy is the reversal of groundwater withdrawal rates, which has been used successfully elsewhere in the USA and other nations to solve water intrusion problems.
基金National Natural Science Foundation of China, No.40761005
文摘According to the analysis of the climate materials including the topographic map in 1975, the TM and CBERS satellite remote sensing materials from the 1980s to 2005 as well as the air temperature, precipitation, evaporation rate, maximum depth of snow and the biggest depth of frozen soil in the past 45 years, the water level area of four lakes at the southeast of Nagqu, Tibet including Barn Co, Pung Co, Dung Co and Nuripung Co show a distinct trend of expansion in the past 30 years. In 2005, the water level area of the above four lakes increased by 48.2 km^2, 38.2 km^2, 19.8 km^2 and 26.0 km^2 respectively compared to 1975, with the respective increase rate of 25.6%, 28.2%, 16.2% and 37.6%. That is closely related to the warming and humidified climate change in the recent years such as rise of the air temperature increase of the precipitation, decrease of the evaporation rate and permafrost degradation.