By means of the pore-level simulation, the characteristics of gas-water flow and gas-water distribution during the alternative displacement of gas and water were observed directly from etched-glass micromodel. The res...By means of the pore-level simulation, the characteristics of gas-water flow and gas-water distribution during the alternative displacement of gas and water were observed directly from etched-glass micromodel. The results show that gas-water distribution styles are divided into continuous phase type and separate phase type. The water lock exists in pore and throat during the process of gas-water displacement, and it reduces the gas flow-rate and has some effects on the recovery efficiency during the operation of gas storage. According to the experimental results of aquifer gas storage in X area, the differences in available extent among reservoirs are significant, and the availability of pore space is 33% 45%.展开更多
The Upper Mississippi River flows approximately 2000 km from Lake Itasca, Minnesota to Cairo, Illinois where it is confluences with the Ohio River to form the Lower Mississippi River. North of the confluence, numerous...The Upper Mississippi River flows approximately 2000 km from Lake Itasca, Minnesota to Cairo, Illinois where it is confluences with the Ohio River to form the Lower Mississippi River. North of the confluence, numerous snags, sand bars, rapids, and other obstructions made the Upper Mississippi River travel difficult. This paper highlights how the geological and landscape resources of the Upper Mississippi River and tributary watershed were responsible for the successful economic development of this historically rich region of North America. Environmental challenges include an attempt to keep invasive species such as the Asian carp out of the rivers and lakes north of the Twin Cities. In an attempt to protect the Mississippi River resource, Environmental and Conservation groups have opposed continued navigation through Minneapolis and St. Paul and the planned Upper Mississippi River navigation infrastructure restoration by the United States Corps of Engineers including the upper and lower St. Anthony locks and dams. These Environmental, Conservation and Save the River groups are attempting to mitigate the historic highest and best use of the Mississippi River and adjacent watershed, navigation, and economic development, by having the urban river restored to the natural state.展开更多
致密砂岩气藏孔隙度、渗透率较低,微观孔喉尺度细小,在生产及压裂过程中极易产生水锁伤害。为开展致密储层防水锁作用机理研究,将常规岩心自吸实验、防水锁剂抑制水锁伤害实验与低场核磁共振技术(nuclear magnetic resonance,NMR)相结合...致密砂岩气藏孔隙度、渗透率较低,微观孔喉尺度细小,在生产及压裂过程中极易产生水锁伤害。为开展致密储层防水锁作用机理研究,将常规岩心自吸实验、防水锁剂抑制水锁伤害实验与低场核磁共振技术(nuclear magnetic resonance,NMR)相结合,从微观角度揭示致密砂岩储层微纳米级孔喉中的防水锁作用机理,为致密砂岩气藏防水锁相关研究提供理论依据。结果表明:加入防水锁添加剂后,流体表面张力下降,接触角增大,自吸速率变慢,渗透率有一定程度恢复;在此基础上,通过核磁共振T 2谱从微观角度评价缓慢自吸阶段液体在不同孔喉尺度范围内的液相水锁滞留现象,其中加入防水锁添加剂后在自吸20 h时在较小孔喉处自吸液相平均占比为38.61%,整体孔喉平均液相占比为35.79%。而在未加入防水锁试剂的样品中在自吸20 h时在较小孔喉处液相占比为67.48%,整体孔喉占比为54.52%;通过防水锁剂抑制水锁伤害实验得出,加入防水锁剂后渗透率恢复程度在15.38%~20.19%,整体液相滞留占比平均下降幅度在10.73%。防水锁剂有效地降低较小孔候处液相滞留占比,降低流体表面张力以及增大岩心疏水性能,揭示了致密砂岩气藏防水锁作用机理,为致密砂岩气藏降低水锁伤害程度、提高返排效率,为实现高效开发提供理论支撑。展开更多
The following article has been retracted due to the fact that it cannot be accepted by the author’s university as a scientific peer-reviewed publication. The Editorial Board takes a very strong respect to the author...The following article has been retracted due to the fact that it cannot be accepted by the author’s university as a scientific peer-reviewed publication. The Editorial Board takes a very strong respect to the author’s situation on this matter. This paper published in World Journal of Engineering and Technology Vol.2 No.3B, September 2014, has been removed from this site.展开更多
平陆运河采用多级省水船闸节水技术,控制断面马道枢纽船闸布置三级省水池,航运用水量可节省60%以上。考虑货运量发展周期及船舶过闸效率等因素,近期需从郁江引调水约24 m 3 s。根据水资源论证分析,平陆运河在与引郁入钦调水工程相结合...平陆运河采用多级省水船闸节水技术,控制断面马道枢纽船闸布置三级省水池,航运用水量可节省60%以上。考虑货运量发展周期及船舶过闸效率等因素,近期需从郁江引调水约24 m 3 s。根据水资源论证分析,平陆运河在与引郁入钦调水工程相结合的基础上,以不影响现状贵港枢纽最小下泄流量保证率为前提,通过调整百色水库发电调度,结合西津、邕宁等水库统一调度,可保障平陆运河近期航运用水需求。展开更多
基金Project(2011ZX05013-002)supported by National Science and Technology Major Projects of China
文摘By means of the pore-level simulation, the characteristics of gas-water flow and gas-water distribution during the alternative displacement of gas and water were observed directly from etched-glass micromodel. The results show that gas-water distribution styles are divided into continuous phase type and separate phase type. The water lock exists in pore and throat during the process of gas-water displacement, and it reduces the gas flow-rate and has some effects on the recovery efficiency during the operation of gas storage. According to the experimental results of aquifer gas storage in X area, the differences in available extent among reservoirs are significant, and the availability of pore space is 33% 45%.
文摘The Upper Mississippi River flows approximately 2000 km from Lake Itasca, Minnesota to Cairo, Illinois where it is confluences with the Ohio River to form the Lower Mississippi River. North of the confluence, numerous snags, sand bars, rapids, and other obstructions made the Upper Mississippi River travel difficult. This paper highlights how the geological and landscape resources of the Upper Mississippi River and tributary watershed were responsible for the successful economic development of this historically rich region of North America. Environmental challenges include an attempt to keep invasive species such as the Asian carp out of the rivers and lakes north of the Twin Cities. In an attempt to protect the Mississippi River resource, Environmental and Conservation groups have opposed continued navigation through Minneapolis and St. Paul and the planned Upper Mississippi River navigation infrastructure restoration by the United States Corps of Engineers including the upper and lower St. Anthony locks and dams. These Environmental, Conservation and Save the River groups are attempting to mitigate the historic highest and best use of the Mississippi River and adjacent watershed, navigation, and economic development, by having the urban river restored to the natural state.
文摘The following article has been retracted due to the fact that it cannot be accepted by the author’s university as a scientific peer-reviewed publication. The Editorial Board takes a very strong respect to the author’s situation on this matter. This paper published in World Journal of Engineering and Technology Vol.2 No.3B, September 2014, has been removed from this site.
文摘平陆运河采用多级省水船闸节水技术,控制断面马道枢纽船闸布置三级省水池,航运用水量可节省60%以上。考虑货运量发展周期及船舶过闸效率等因素,近期需从郁江引调水约24 m 3 s。根据水资源论证分析,平陆运河在与引郁入钦调水工程相结合的基础上,以不影响现状贵港枢纽最小下泄流量保证率为前提,通过调整百色水库发电调度,结合西津、邕宁等水库统一调度,可保障平陆运河近期航运用水需求。