The temperature and salinity distributions, and the water mass structures in Northwest Pacific Ocean are studied using the temperature and salinity data obtained by Argo profiling floats. The T-S relation in this regi...The temperature and salinity distributions, and the water mass structures in Northwest Pacific Ocean are studied using the temperature and salinity data obtained by Argo profiling floats. The T-S relation in this region indicates there exist 8 water masses, they are the North Pacific Tropical Surface Water (NPTSW), North P, acific Subsurface Water (NPSSW), North Pacific Intermediate Water (NPIW), North Pacific Subtropical Water (NPSTW), North Pacific Deep Water (NPDW) and Equatorial Surface Water (ESW), and the South Pacific Subsurface Water (SPSSW) and South Pacific Intermediate Water (SPIW).展开更多
On the basis of perennial monthly mean temperature and salinity data, the classification of monthly water masses at the surface and the bottom in the Bohai Sea, the Huanghai Sea and the East China Sea, has been made b...On the basis of perennial monthly mean temperature and salinity data, the classification of monthly water masses at the surface and the bottom in the Bohai Sea, the Huanghai Sea and the East China Sea, has been made by using the method of fuzzy cluster from the modified characteristic of water masses in the shallow water area. In this paper, the basic features, growth and decline patterns of water masses in relation to fishing grounds in the whole shelves of the Bohai Sea, the Huanghai Sea and the East China Sea are discussed with emphasis.展开更多
The marine dynamic environment of the Bohai Sea and the Yellow Sea in the winter of 2006 is simulated by the Regional Ocean Modelling System(ROMS) marine numerical model. Using the simulated temperature and salinity...The marine dynamic environment of the Bohai Sea and the Yellow Sea in the winter of 2006 is simulated by the Regional Ocean Modelling System(ROMS) marine numerical model. Using the simulated temperature and salinity, the water exchange zone between the Bohai Sea and Yellow Sea is defined through the Spectral Mixture Model(SMM). The influence of winter gales on the water exchange is also discussed. It is found that the Yellow Sea water masses in winter are distributed in a "tongue" shape in the Bohai Strait region, the water exchange zone presents a zonal distribution along the margin of the "tongue", with a tendency of running from northwest to southeast, and the water exchange is intensified at the tip of the "tongue". Besides, the coastal area in the northernmost Yellow Sea does not participate in the water exchange between the Bohai Sea and Yellow Sea. The result shows that the winter gale events play a role in enhancing the water exchange. It is specifically shown by the facts: the Yellow Sea warm current is enhanced to intrude the Bohai Sea by the gale process; the water exchange zone extends into the Bohai Sea; the water exchange belt in the southern part becomes wider; the mixture zone of river runoff with the Bohai Sea water upon its entry is enlarged and shifts northwards. Within two days after the gale process, the exchange zone retreats toward the Yellow Sea and the exchange zone resulted from the Huanghe River(Yellow River) runoff also shrinks back shoreward.展开更多
The seasonal circulation in the southeastern Huanghai Sea has been studied with hydrographic data,which were observed in February and June 1994 and bimonthly during 1970 - 1990, and numerical model results.Horizontal ...The seasonal circulation in the southeastern Huanghai Sea has been studied with hydrographic data,which were observed in February and June 1994 and bimonthly during 1970 - 1990, and numerical model results.Horizontal distributions of tempersture and salinity in 1994 are quite different due to strong tidal mixing so that weneed a analysis to see the real distributions of water masses. The mixing ratio analysis with the data of 1970 - 1990shows the connection of the waters in the west coasts of Korea Peninsula with warm and saline waters from the southin summer, which means northward inflows along the west coasts of Korea Peninsula in summer. With this flow, theseasonal circulations, which are deduced from the seasonal change of water mass distributions in the lower layer, arewarm inflows in winter and cold outflows in summer in the central Huanghai Sea, and cold outflows in winter andwarm inflows in summer along the west coasts of Korea Peninsula. The seasonall changed inflows might be theHuanghai Sea Warm Current. The monsoon winds can drive such circulations. However, summer monsoon winds areweak and irregular. As one of other possible dynamics, the variation of Kuroshio transport is numerically studied withallowing sea level fluctuations. Although it should be studied more, it possibly drives the summer circulations. The realcirculations seem to be driven by both of them.展开更多
A broad range of organic compounds are known to exist in drinking water sources and serve as precursors of disinfection byproducts(DBPs).Epidemiological findings of an association of increased risk of bladder cancer...A broad range of organic compounds are known to exist in drinking water sources and serve as precursors of disinfection byproducts(DBPs).Epidemiological findings of an association of increased risk of bladder cancer with the consumption of chlorinated water has resulted in health concerns about DBPs.Peptides are thought to be an important category of DBP precursors in water.However,little is known about the actual presence of peptides and their DBPs in drinking water because of their high sample complexity and low concentrations.To address this challenge and identify peptides and non-chlorinated/chlorinated peptide DBPs from large sets of organic compounds in water,we developed a novel high throughput analysis strategy,which integrated multiple solid phase extraction(SPE),high performance liquid chromatography(HPLC)separation,and non-target identification using precursor ion exclusion(PIE)high resolution mass spectrometry(MS).After MS analysis,structures of candidate compounds,particularly peptides,were obtained by searching against the Human Metabolome Database(HMDB).Using this strategy,we successfully detected 625 peptides(out of 17,205 putative compounds)and 617 peptides(out of 13,297)respectively in source and finished water samples.The source and finished water samples had 501 peptides and amino acids in common.The remaining 116 peptides and amino acids were unique to the finished water.From a subset of 30 putative compounds for which standards were available,25 were confirmed using HPLC-MS analysis.By analyzing the peptides identified in source and finished water,we successfully confirmed three disinfection reaction pathways that convert peptides into toxic DBPs.展开更多
Environmental water samples can be extremely complex,with potentially thousands of molecules that can derive from natural organic matter(NOM)and thousands that derive from anthropogenic contaminants.As complex as th...Environmental water samples can be extremely complex,with potentially thousands of molecules that can derive from natural organic matter(NOM)and thousands that derive from anthropogenic contaminants.As complex as these samples are,drinking water can be even more complex.Due to disinfectants that are used to treat drinking water(e.g.,chlorine,chloramines,展开更多
基金the specical scientific research project for the welfare of the State Oceanic Administration for 2007.(No.200706022).
文摘The temperature and salinity distributions, and the water mass structures in Northwest Pacific Ocean are studied using the temperature and salinity data obtained by Argo profiling floats. The T-S relation in this region indicates there exist 8 water masses, they are the North Pacific Tropical Surface Water (NPTSW), North P, acific Subsurface Water (NPSSW), North Pacific Intermediate Water (NPIW), North Pacific Subtropical Water (NPSTW), North Pacific Deep Water (NPDW) and Equatorial Surface Water (ESW), and the South Pacific Subsurface Water (SPSSW) and South Pacific Intermediate Water (SPIW).
基金This subject is aided financially by Chinese National Natural Science Foundation.
文摘On the basis of perennial monthly mean temperature and salinity data, the classification of monthly water masses at the surface and the bottom in the Bohai Sea, the Huanghai Sea and the East China Sea, has been made by using the method of fuzzy cluster from the modified characteristic of water masses in the shallow water area. In this paper, the basic features, growth and decline patterns of water masses in relation to fishing grounds in the whole shelves of the Bohai Sea, the Huanghai Sea and the East China Sea are discussed with emphasis.
基金The National Natural Science Foundation of China under contract Nos 41206013,41376014,41430963 and41106004the Key Marine Science Foundation of the State Oceanic Administration of China for Young Scholar under contract Nos2012202,2013203 and 2012223+2 种基金the Public Science and Technology Research Funds Projects of Ocean under contract No.201205018the National Science and Technology Support Program under contract No.2014BAB12B02the Tianjin Science and Technology Support Program under contract No.14ZCZDSF00012
文摘The marine dynamic environment of the Bohai Sea and the Yellow Sea in the winter of 2006 is simulated by the Regional Ocean Modelling System(ROMS) marine numerical model. Using the simulated temperature and salinity, the water exchange zone between the Bohai Sea and Yellow Sea is defined through the Spectral Mixture Model(SMM). The influence of winter gales on the water exchange is also discussed. It is found that the Yellow Sea water masses in winter are distributed in a "tongue" shape in the Bohai Strait region, the water exchange zone presents a zonal distribution along the margin of the "tongue", with a tendency of running from northwest to southeast, and the water exchange is intensified at the tip of the "tongue". Besides, the coastal area in the northernmost Yellow Sea does not participate in the water exchange between the Bohai Sea and Yellow Sea. The result shows that the winter gale events play a role in enhancing the water exchange. It is specifically shown by the facts: the Yellow Sea warm current is enhanced to intrude the Bohai Sea by the gale process; the water exchange zone extends into the Bohai Sea; the water exchange belt in the southern part becomes wider; the mixture zone of river runoff with the Bohai Sea water upon its entry is enlarged and shifts northwards. Within two days after the gale process, the exchange zone retreats toward the Yellow Sea and the exchange zone resulted from the Huanghe River(Yellow River) runoff also shrinks back shoreward.
文摘The seasonal circulation in the southeastern Huanghai Sea has been studied with hydrographic data,which were observed in February and June 1994 and bimonthly during 1970 - 1990, and numerical model results.Horizontal distributions of tempersture and salinity in 1994 are quite different due to strong tidal mixing so that weneed a analysis to see the real distributions of water masses. The mixing ratio analysis with the data of 1970 - 1990shows the connection of the waters in the west coasts of Korea Peninsula with warm and saline waters from the southin summer, which means northward inflows along the west coasts of Korea Peninsula in summer. With this flow, theseasonal circulations, which are deduced from the seasonal change of water mass distributions in the lower layer, arewarm inflows in winter and cold outflows in summer in the central Huanghai Sea, and cold outflows in winter andwarm inflows in summer along the west coasts of Korea Peninsula. The seasonall changed inflows might be theHuanghai Sea Warm Current. The monsoon winds can drive such circulations. However, summer monsoon winds areweak and irregular. As one of other possible dynamics, the variation of Kuroshio transport is numerically studied withallowing sea level fluctuations. Although it should be studied more, it possibly drives the summer circulations. The realcirculations seem to be driven by both of them.
基金supported by grants from the Natural Sciences and Engineering Research Council of Canada,Alberta Health,and Alberta Innovates-Energy and Environment Solutions
文摘A broad range of organic compounds are known to exist in drinking water sources and serve as precursors of disinfection byproducts(DBPs).Epidemiological findings of an association of increased risk of bladder cancer with the consumption of chlorinated water has resulted in health concerns about DBPs.Peptides are thought to be an important category of DBP precursors in water.However,little is known about the actual presence of peptides and their DBPs in drinking water because of their high sample complexity and low concentrations.To address this challenge and identify peptides and non-chlorinated/chlorinated peptide DBPs from large sets of organic compounds in water,we developed a novel high throughput analysis strategy,which integrated multiple solid phase extraction(SPE),high performance liquid chromatography(HPLC)separation,and non-target identification using precursor ion exclusion(PIE)high resolution mass spectrometry(MS).After MS analysis,structures of candidate compounds,particularly peptides,were obtained by searching against the Human Metabolome Database(HMDB).Using this strategy,we successfully detected 625 peptides(out of 17,205 putative compounds)and 617 peptides(out of 13,297)respectively in source and finished water samples.The source and finished water samples had 501 peptides and amino acids in common.The remaining 116 peptides and amino acids were unique to the finished water.From a subset of 30 putative compounds for which standards were available,25 were confirmed using HPLC-MS analysis.By analyzing the peptides identified in source and finished water,we successfully confirmed three disinfection reaction pathways that convert peptides into toxic DBPs.
文摘Environmental water samples can be extremely complex,with potentially thousands of molecules that can derive from natural organic matter(NOM)and thousands that derive from anthropogenic contaminants.As complex as these samples are,drinking water can be even more complex.Due to disinfectants that are used to treat drinking water(e.g.,chlorine,chloramines,