期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Electrochemical reconstruction of non-noble metal-based heterostructure nanorod arrays electrodes for highly stable anion exchange membrane seawater electrolysis
1
作者 Jingchen Na Hongmei Yu +7 位作者 Senyuan Jia Jun Chi Kaiqiu Lv Tongzhou Li Yun Zhao Yutong Zhao Haitao Zhang Zhigang Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期370-382,共13页
Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,par... Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,particularly the presence of aggressive Cl^(-),has been proven to be prone to parasitic chloride ion oxidation and corrosion reactions,thus restricting seawater electrolyzer lifetime.Herein,hierarchical structure(Ni,Fe)O(OH)@NiCoS nanorod arrays(NAs)catalysts with heterointerfaces and localized oxygen vacancies were synthesized at nickel foam substrates via the combination of hydrothermal and annealing methods to boost seawater dissociation.The hiera rchical nanostructure of NiCoS NAs enhanced electrode charge transfer rate and active surface area to accelerate oxygen evolution reaction(OER)and generated sulfate gradient layers to repulsive aggressive Cl^(-).The fabricated heterostructure and vacancies of(Ni,Fe)O(OH)tuned catalyst electronic structure into an electrophilic state to enhance the binding affinity of hydroxyl intermediates and facilitate the structural transformation into amorphousγ-NiFeOOH for promoting OER.Furthermore,through operando electrochemistry techniques,we found that theγ-NiFeOOH possessing an unsaturated coordination environment and lattice-oxygen-participated OER mechanism can minimize electrode Cl^(-)corrosion enabled by stabilizing the adsorption of OH*intermediates,making it one of the best OER catalysts in the seawater medium reported to date.Consequently,these catalysts can deliver current densities of 100 and 500 mA cm-2for boosting OER at minimal overpotentials of 245and 316 mV,respectively,and thus prevent chloride ion oxidation simultaneously.Impressively,a highly stable anion exchange membrane(AEM)seawater electrolyzer based on the non-noble metal heterostructure electrodes reached a record low degradation rate under 100μV h-1at constant industrial current densities of 400 and 600 mA cm-2over 300 h,which exhibits a promising future for the nonprecious and stable AEMWE in the direct seawater electrolysis industry. 展开更多
关键词 Direct seawater electrolysis Anion exchange membrane water ELECTROLYSIS Oxygen evolution reaction Oxygen vacancies Operando electrochemistry techniques
下载PDF
Towards high-performance and robust anion exchange membranes(AEMs)for water electrolysis:Super-acid-catalyzed synthesis of AEMs
2
作者 Geun Woong Ryoo Sun Hwa Park +3 位作者 Ki Chang Kwon Jong Hun Kang Ho Won Jang Min Sang Kwon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期478-510,I0012,共34页
The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen pro... The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen production technologies,anion exchange membrane water electrolyzer(AEMWE)has emerged as a next-generation technology known for its high hydrogen production efficiency and its ability to use non-metal catalysts.However,this technology faces significant challenges,particularly in terms of the membrane durability and low ionic conductivity.To address these challenges,research efforts have focused on developing membranes with a new backbone structure and anion exchange groups to enhance durability and ionic conductivity.Notably,the super-acid-catalyzed condensation(SACC)synthesis method stands out due to its user convenience,the ability to create high molecular weight(MW)polymers,and the use of oxygen-tolerant organic catalysts.Although the synthesis of anion exchange membranes(AEMs)using the SACC method began in 2015,and despite growing interest in this synthesis approach,there remains a scarcity of review papers focusing on AEMs synthesized using the SACC method.The review covers the basics of SACC synthesis,presents various polymers synthesized using this method,and summarizes the development of these polymers,particularly their building blocks including aryl,ketone,and anion exchange groups.We systematically describe the effects of changes in the molecular structure of each polymer component,conducted by various research groups,on the mechanical properties,conductivity,and operational stability of the membrane.This review will provide insights into the development of AEMs with superior performance and operational stability suitable for water electrolysis applications. 展开更多
关键词 Green hydrogen production water electrolysis Anion exchange membrane water electrolyzer(AEMWE) Anion exchange membranes(AEMs) Super-acid-catalyzed condensation(SACC)
下载PDF
Technical factors affecting the performance of anion exchange membrane water electrolyzer 被引量:1
3
作者 Xun Zhang Yakang Li +3 位作者 Wei Zhao Jiaxin Guo Pengfei Yin Tao Ling 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2259-2269,共11页
Anion exchange membrane(AEM)electrolysis is a promising membrane-based green hydrogen production technology.However,AEM electrolysis still remains in its infancy,and the performance of AEM electrolyzers is far behind ... Anion exchange membrane(AEM)electrolysis is a promising membrane-based green hydrogen production technology.However,AEM electrolysis still remains in its infancy,and the performance of AEM electrolyzers is far behind that of well-developed alkaline and proton exchange membrane electrolyzers.Therefore,breaking through the technical barriers of AEM electrolyzers is critical.On the basis of the analysis of the electrochemical performance tested in a single cell,electrochemical impedance spectroscopy,and the number of active sites,we evaluated the main technical factors that affect AEM electrolyzers.These factors included catalyst layer manufacturing(e.g.,catalyst,carbon black,and anionic ionomer)loadings,membrane electrode assembly,and testing conditions(e.g.,the KOH concentration in the electrolyte,electrolyte feeding mode,and operating temperature).The underlying mechanisms of the effects of these factors on AEM electrolyzer performance were also revealed.The irreversible voltage loss in the AEM electrolyzer was concluded to be mainly associated with the kinetics of the electrode reaction and the transport of electrons,ions,and gas-phase products involved in electrolysis.Based on the study results,the performance and stability of AEM electrolyzers were significantly improved. 展开更多
关键词 hydrogen production anion exchange membrane water electrolyzer CATALYST membrane electrode assembly
下载PDF
Internal Polarization Field Induced Hydroxyl Spillover Effect for Industrial Water Splitting Electrolyzers
4
作者 Jingyi Xie Fuli Wang +3 位作者 Yanan Zhou Yiwen Dong Yongming Chai Bin Dong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期438-449,共12页
The formation of multiple oxygen intermediates supporting efficient oxygen evolution reaction(OER)are affinitive with hydroxyl adsorption.However,ability of the catalyst to capture hydroxyl and maintain the continuous... The formation of multiple oxygen intermediates supporting efficient oxygen evolution reaction(OER)are affinitive with hydroxyl adsorption.However,ability of the catalyst to capture hydroxyl and maintain the continuous supply at active sits remains a tremendous challenge.Herein,an affordable Ni2P/FeP2 heterostructure is presented to form the internal polarization field(IPF),arising hydroxyl spillover(HOSo)during OER.Facilitated by IPF,the oriented HOSo from FeP2 to Ni2P can activate the Ni site with a new hydroxyl transmission channel and build the optimized reaction path of oxygen intermediates for lower adsorption energy,boosting the OER activity(242 mV vs.RHE at 100 mA cm-2)for least 100 h.More interestingly,for the anion exchange membrane water electrolyzer(AEMWE)with low concentration electrolyte,the advantage of HOSo effect is significantly amplified,delivering 1 A cm^(-2)at a low cell voltage of 1.88 V with excellent stability for over 50 h. 展开更多
关键词 Hydroxyl spillover effect Internal polarization field HETEROSTRUCTURE Oxygen reduction reaction Anion exchange membrane water electrolysis
下载PDF
Ternary layered double hydroxide oxygen evolution reaction electrocatalyst for anion exchange membrane alkaline seawater electrolysis 被引量:2
5
作者 Yoo Sei Park Jae-Yeop Jeong +6 位作者 Myeong Je Jang Chae-Yeon Kwon Geul Han Kim Jaehoon Jeong Ji-hoon Lee Jooyoung Lee Sung Mook Choi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期127-134,I0004,共9页
Anion exchange membrane(AEM)water electrolyzers are promising energy devices for the production of clean hydrogen from seawater.However,the lack of active and robust electrocatalysts for the oxygen evolution reaction(... Anion exchange membrane(AEM)water electrolyzers are promising energy devices for the production of clean hydrogen from seawater.However,the lack of active and robust electrocatalysts for the oxygen evolution reaction(OER)severely impedes the development of this technology.In this study,a ternary layered double hydroxide(LDH)OER electrocatalyst(NiFeCo-LDH)is developed for high-performance AEM alkaline seawater electrolyzers.The AEM alkaline seawater electrolyzer catalyzed by the NiFeCo LDH shows high seawater electrolysis performance(0.84 A/cm^(2)at 1.7 Vcell)and high hydrogen production efficiency(77.6%at 0.5 A/cm^(2)),thus outperforming an electrolyzer catalyzed by a benchmark IrO_(2)electrocatalyst.The NiFeCo-LDH electrocatalyst greatly improves the kinetics of the AEM alkaline seawater electrolyzer,consequently reducing its activation loss and leading to high performance.Based on the results,this NiFeCo-LDH-catalyzed AEM alkaline seawater electrolyzer can likely surpass the energy conversion targets of the US Department of Energy. 展开更多
关键词 Anion exchange membranes water electrolysis Oxygen evolution reactions Alkaline seawater electrolysis Hydrogen production
下载PDF
Application of Whole Membrane Water Treatment Technology in Environmental Protection
6
作者 Cuiyan Wang 《Journal of World Architecture》 2020年第5期7-9,共3页
In the current social development of our country,environmental protection has become a key content,and water treatment process is a key step to achieve environmental protection.This paper analyzes the application of w... In the current social development of our country,environmental protection has become a key content,and water treatment process is a key step to achieve environmental protection.This paper analyzes the application of whole membrane water treatment technology in environmental protection.It is hoped that this analysis can be helpful for the rational application of the whole membrane water treatment technology and the improvement of environmental protection quality. 展开更多
关键词 Environmental protection water treatment process Whole membrane water treatment technology TECHNOLOGY
下载PDF
Ruthenium-lead oxide for acidic oxygen evolution reaction in proton exchange membrane water electrolysis
7
作者 Feng-Yang Chen Chang Qiu +3 位作者 Zhen-Yu Wu Tae-Ung Wi YZou Finfrock Haotian Wang 《Nano Research》 SCIE EI CSCD 2024年第10期8671-8677,共7页
Developing an active and stable anode catalyst for the proton exchange membrane water electrolyzer(PEM-WE)is a critical objective to enhance the economic viability of green hydrogen technology.However,the expensive ir... Developing an active and stable anode catalyst for the proton exchange membrane water electrolyzer(PEM-WE)is a critical objective to enhance the economic viability of green hydrogen technology.However,the expensive iridium-based electrocatalyst remains the sole practical material with industrial-level stability for the acidic oxygen evolution reaction(OER)at the anode.Ruthenium-based catalysts have been proposed as more cost-effective alternatives with improved activity,though their stability requires enhancement.The current urgent goal is to reduce costs and noble metal loading of the OER catalyst while maintaining robust activity and stability.In this study,we design a Ru-based OER catalyst incorporating Pb as a supporting element.This electrocatalyst exhibits an OER overpotential of 201 mV at 10 mA·cm^(-2),simultaneously reducing Ru noble metal loading by~40%.Normalization of the electrochemically active surface area unveils improved intrinsic activity compared to the pristine RuO_(2) catalyst.During a practical stability test in a PEM-WE setup,our developed catalyst sustains stable performance over 300 h without notable degradation,underscoring its potential for future applications as a reliable anodic catalyst. 展开更多
关键词 ELECTROCATALYSIS oxygen evolution reaction water splitting proton exchange membrane water electrolyzer
原文传递
Interfacial engineering of atomic platinum-doped molybdenum carbide quantum dots for high-rate and stable hydrogen evolution reaction in proton exchange membrane water electrolysis 被引量:2
8
作者 Lulu Chen Yichao Huang +12 位作者 Yanping Ding Ping Yu Fang Huang Wenbo Zhou Limin Wang Yangyang Jiang Haitao Li Hanqing Cai Lin Wang Hang Wang Meihong Liao Lianming Zhao Zhuangjun Fan 《Nano Research》 SCIE EI CSCD 2023年第10期12186-12195,共10页
Platinum(Pt)-based electrocatalysts remain the only practical cathode catalysts for proton exchange membrane water electrolysis(PEMWE),due to their excellent catalytic activity for acidic hydrogen evolution reaction(H... Platinum(Pt)-based electrocatalysts remain the only practical cathode catalysts for proton exchange membrane water electrolysis(PEMWE),due to their excellent catalytic activity for acidic hydrogen evolution reaction(HER),but are greatly limited by their low reserves and high cost.Here,we report an interfacial engineering strategy to obtain a promising low-Pt loading catalyst with atomically Pt-doped molybdenum carbide quantum dots decorated on conductive porous carbon(Pt-MoCx@C)for high-rate and stable HER in PEMWE.Benefiting from the strong interfacial interaction between Pt atoms and the ultra-small MoCx quantum dots substrate,the Pt-MoCx catalyst exhibits a high mass activity of 8.00 A·mgPt−1,5.6 times higher than that of commercial 20 wt.%Pt/C catalyst.Moreover,the strong interfacial coupling of Pt and MoCx substrate greatly improves the HER stability of the Pt-MoCx catalyst.Density functional theory studies further confirm the strong metal-support interaction on Pt-MoCx,the critical role of MoCx substrate in the stabilization of surface Pt atoms,as well as activation of MoCx substrate by Pt atoms for improving HER durability and activity.The optimized Pt-MoCx@C catalyst demonstrates>2000 h stability under a water-splitting current of 1000 mA·cm^(−2)when applied to the cathode of a PEM water electrolyzer,suggesting the potential for practical applications. 展开更多
关键词 proton exchange membrane(PEM)water electrolysis hydrogen evolution reaction ELECTROCATALYSTS molybdenum carbides PLATINUM
原文传递
Supporting IrO_(x) nanosheets on hollow TiO_(2) for highly efficient acidic water splitting
9
作者 Ge Yu Ruilong Li +5 位作者 Yanmin Hu Xingen Lin Ze Lin Dongyang Wu Gongming Wang Xun Hong 《Nano Research》 SCIE EI CSCD 2024年第8期6903-6909,共7页
The efficiency of proton exchange membrane water electrolysis(PEM-WE)for hydrogen production is heavily dependent on the noble metal iridium-based catalysts.However,the scarcity of iridium limits the large-scale appli... The efficiency of proton exchange membrane water electrolysis(PEM-WE)for hydrogen production is heavily dependent on the noble metal iridium-based catalysts.However,the scarcity of iridium limits the large-scale application of PEM-WE.To address this issue,it is promising to select an appropriate support because it not only enhances the utilization efficiency of noble metals but also improves mass transport under high current.Herein,we supported amorphous IrO_(x) nanosheets onto the hollow TiO_(2) sphere(denoted as IrO_(x)),which demonstrated excellent performance in acidic electrolytic water splitting.Specifically,the annealed IrO_(x)catalyst at 150℃in air exhibited a mass activity of 1347.5 A·gIr^(−1),which is much higher than that of commercial IrO_(2) of 12.33 A·gIr^(−1) at the overpotential of 300 mV for oxygen evolution reaction(OER).Meanwhile,the annealed IrO_(x) exhibited good stability for 600 h operating at 10 mA·cm^(−2).Moreover,when using IrO_(x) and annealed IrO_(x) catalysts for water splitting,a cell voltage as low as 1.485 V can be achieved at 10 mA·cm^(−2).The cell can continuously operate for 200 h with negligible degradation of performance. 展开更多
关键词 oxygen evolution reaction hydrogen evolution reaction amorphous IrO_(x) hollow TiO_(2) proton exchange membrane water electrolysis
原文传递
Controlling reduction degree of graphene oxide membranes for improved water permeance 被引量:8
10
作者 Qing Zhang Xitang Qian +2 位作者 Khalid Hussain Thebo Hui-Ming Cheng Wencai Ren 《Science Bulletin》 SCIE EI CSCD 2018年第12期788-794,共7页
Tailoring tire pore structure and surface chemistry of graphene-based laminates is essentially important for their applications as separation membranes. Usually, pure graphene oxide (GO) and completely reduced GO (... Tailoring tire pore structure and surface chemistry of graphene-based laminates is essentially important for their applications as separation membranes. Usually, pure graphene oxide (GO) and completely reduced GO (rGO) membranes suffer florn low water permeance because of the lack of pristine graphitic sp2 domains and very small interlayer spacing, respectively. In this work, we studied the influence of reduction degree on the structure and separation pertornrance of rGO membranes, tt was found that weak reduction retains the good dispersion and hydrophilicity of GO nanosheets. More importantly, it increases the number of pristine graphitic sp2 domains in rGO nanosheets while keeping the large interlayer spacing of the GO membranes in most regions at the same time. The resultant mernbranes show a high water permeance of 56.3 L m^-2 h^ -1 bar^ -1, which is about 4 times and over 10^4 times larger tban those of the GO and completely reduced rGO membranes, respectively, and high rejection over 95700 for various dyes. Furthermore, they show better structure stability and more superior separation perfor- mance than GO membranes in acid and alkali environments. 展开更多
关键词 Graphene oxide Reduction Separation membrane water permeance
原文传递
Modulating metal-organic frameworks for catalyzing acidic oxygen evolution for proton exchangemembrane water electrolysis 被引量:4
11
作者 Xiaomin Xu Hainan Sun +1 位作者 San Ping Jiang Zongping Shao 《SusMat》 2021年第4期460-481,共22页
Proton exchangemembrane(PEM)water electrolysis represents one of the most promising technologies to achieve green hydrogen production,but currently its practical viability is largely affected by the slow reaction kine... Proton exchangemembrane(PEM)water electrolysis represents one of the most promising technologies to achieve green hydrogen production,but currently its practical viability is largely affected by the slow reaction kinetics of the anodic oxygen evolution reaction(OER)in an acidic environment.While noble metal-based catalysts containing iridium or ruthenium are excellent catalysts for the acidic OER,their practical use in PEM electrolyzers is hindered due to their low abundance and high cost.Most recently,metal-organic frameworks(MOFs)have been demonstrated as a perfect platform to facilitate the design of acidic OER catalysts with both high efficiency and cost-effectiveness.Here,we pro-vide a timely and comprehensive overview of the recent progress on MOF-based acidic OER catalysts.The fundamental mechanisms of the acidic OER are first introduced,followed by a summary of the development of pristine MOFs and MOF derivatives as acidic OER catalysts.Importantly,a number of catalyst design strategies are discussed aiming at improving the acidic OER catalytic per-formance of MOF-based candidates.The integration of MOF-based catalysts into real PEM water electrolyzers is also included.Finally,future research directions are provided to achieve better MOF-based catalysts operational in acidic envi-ronments and PEM devices. 展开更多
关键词 acidic water oxidation ELECTROCATALYSIS hydrogen production metal-organic frameworks oxy-gen evolution reaction proton exchange membrane water electrolysis
原文传递
Differences in dinucleotide frequencies of thermophilic genes encoding water soluble and membrane proteins 被引量:1
12
作者 Hiroshi NAKASHIMA Yuka KURODA 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2011年第6期419-427,共9页
The occurrence frequencies of the dinucleotides of genes of three thermophilic and three mesophilic species from both archaea and eubacteria were investigated in this study. The genes encoding water soluble proteins w... The occurrence frequencies of the dinucleotides of genes of three thermophilic and three mesophilic species from both archaea and eubacteria were investigated in this study. The genes encoding water soluble proteins were rich in the dinucleotides of purine dimers, whereas the genes encoding membrane proteins were rich in pyrimidine dimers. The dinucleotides of purine dimers are the counterparts of pyrimidine dimers in a double-stranded DNA. The purine/pyrimidine dimers were favored in the thermophiles but not in the mesophiles, based on comparisons of observed and expected frequencies. This finding is in agreement with our previous study which showed that purine/pyrimidine dimers are positive factors that increase the thermal stability of DNA. The dinucleotides AA, AG, and GA are components of the codons of charged residues of Glu, Asp, Lys, and Arg, and the dinucleotides TT, CT, and TC are components of the codons of hydrophobic residues of Leu, Ile, and Phe. This is consistent with the suitabilities of the different amino acid residues for water soluble and membrane proteins. Our analysis provides a picture of how thermophilic species produce water soluble and membrane proteins with distinctive characters: the genes encoding water soluble proteins use DNA sequences rich in purine dimers, and the genes encoding membrane proteins use DNA sequences rich in pyrimidine dimers on the opposite strand. 展开更多
关键词 water soluble and membrane proteins Purine/pyrimidine dimers Thermophilic and mesophilic species Dinucleotide frequencies
原文传递
Towards a better hydraulic cleaning strategy for ultrafiltration membrane fouling by humic acid: Effect of backwash water composition 被引量:4
13
作者 Haiqing Chang Heng Liang +3 位作者 Fangshu Qu Jun Ma Nanqi Ren Guibai Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第5期177-186,共10页
As a routine measurement to alleviate membrane fouling, hydraulic cleaning is of great significance for the steady operation of ultrafiltration(UF) systems in water treatment processes. In this work, a comparative s... As a routine measurement to alleviate membrane fouling, hydraulic cleaning is of great significance for the steady operation of ultrafiltration(UF) systems in water treatment processes. In this work, a comparative study was performed to investigate the effects of the composition of backwash water on the hydraulic cleaning performance of UF membranes fouled by humic acid(HA). Various types of backwash water, including UF permeate, Milli-Q water, Na Cl solution, CaCl_2 solution and HA solution, were compared in terms of hydraulically irreversible fouling index, total surface tension and residual HA. The results indicated that Milli-Q water backwash was superior to UF permeate backwash in cleaning HA-fouled membranes, and the backwash water containing Na+or HA outperformed Milli-Q water in alleviating HA fouling. On the contrary, the presence of Ca^(2+) in backwash water significantly decreased the backwash efficiency. Moreover, Ca^(2+) played an important role in foulant removal, and the residual HA content closely related to the residual Ca^(2+) content.Mechanism analysis suggested that the backwash process may involve fouling layer swelling, ion exchange, electric double layer release and competitive complexation. Ion exchange and competitive complexation played significant roles in the efficient hydraulic cleaning associated with Na+and HA, respectively. 展开更多
关键词 Ultrafiltration membrane fouling Hydraulic cleaning Backwash water composition Humic acid
原文传递
Improving the water electrolysis performance by manipulating the generated nano/micro-bubbles using surfactants 被引量:2
14
作者 Houpeng Wang Zhaoxiang Xu +4 位作者 Wei Lin Xue Yang Xianrui Gu Wei Zhu Zhongbin Zhuang 《Nano Research》 SCIE EI CSCD 2023年第1期420-426,共7页
The impeded mass transfer rate by on-site-generated gas bubbles at both cathode and anode dramatically reduces the energy conversion efficiency of the proton exchange membrane water electrolyzer(PEMWE).Herein,we repor... The impeded mass transfer rate by on-site-generated gas bubbles at both cathode and anode dramatically reduces the energy conversion efficiency of the proton exchange membrane water electrolyzer(PEMWE).Herein,we report a surfactant-assistant method to accelerate the nano/micro-bubble detachment and the mass transfer rate by reducing the surface tension,resulting in an increase in overall efficiency.Four kinds of surfactants are studied in this work.Only potassium perfluorobutyl sulfonate(PPFBS),which has the structural similarity to Nafion,shows a significant promotion of activity and stability for both hygrogen evolution reaction(HER)and oxygen evolution reaction(OER)in the acidic medium at the high current density region.The HER overpotential at 0.1 A·cm−2 decreased 22%,and the current density at−0.4 V increased 31%by adding PPFBS.The promotion of overall efficiency by PPFBS on a homemade PEMWE was also proven.The reduced surface tension and electrostatic repulsion were the probable origins of the accelerated bubble detachment. 展开更多
关键词 proton exchange membrane water electrolysis BUBBLE OVERPOTENTIAL SURFACTANT electrostatic repulsion
原文传递
Boosting the oxygen evolution reaction performance of wrinkled Mn(OH)_(2) via conductive activation with a carbon binder
15
作者 Kahyun Ham Jaewon Lee +1 位作者 Kiyoung Lee Jaeyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期580-587,I0016,共9页
Electrochemical water splitting is one of the most reliable approaches for environmental-friendly hydrogen production.Because of their stability and abundance,Mn-based materials have been studied as electrocatalysts f... Electrochemical water splitting is one of the most reliable approaches for environmental-friendly hydrogen production.Because of their stability and abundance,Mn-based materials have been studied as electrocatalysts for the oxygen evolution reaction(OER),which is a more sluggish reaction in the water splitting system.To increase the OER activity of Mn,it is imperative to facilitate the structural change of Mn oxide to the active phase with Mn_(3)+species,known as the active site.Here,we present the relationship between the electronic conductivity in the catalyst layer and the formation of the Mn active phase,δ-MnO_(2),from wrinkled Mn(OH)_(2).Mn(OH)_(2) has poor conductivity,and it disrupts the oxidation reaction toward MnOOH orδ-MnO_(2).Adjacent conductive carbon to Mn(OH)_(2) enabled Mn(OH)_(2) to be oxidized toδ-MnO_(2).Furthermore,after repetitive cyclic voltammetry activation,the more conductive environment resulted in a higher density ofδ-MnO_(2) through the irreversible phase transition,and thus it contributes to the improvement of the OER activity. 展开更多
关键词 Hydrogen production Oxygen evolution reaction Anion exchange membrane water electrolysis Anodization Manganese oxide
下载PDF
Drinking water treatment using a submerged internal-circulation membrane coagulation reactor coupled with permanganate oxidation 被引量:3
16
作者 Zhongguo Zhang Dan Liu +6 位作者 Yu Qian Yue Wu Peiran He Shuang Liang Xiaozheng Fu Jiding Li Changqing Ye 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第6期153-163,共11页
A submerged internal circulating membrane coagulation reactor (MCR) was used to treat surface water to produce drinking water. Polyaluminum chloride (PAC1) was used as coagulant, and a hydrophilic polyvinylidene f... A submerged internal circulating membrane coagulation reactor (MCR) was used to treat surface water to produce drinking water. Polyaluminum chloride (PAC1) was used as coagulant, and a hydrophilic polyvinylidene fluoride (PVDF) submerged hollow fiber microfiltration membrane was employed. The influences of trans-membrane pressure (TMP), zeta potential (ZP) of the suspended particles in raw water, and KMnO4 dosing on water flux and the removal of turbidity and organic matter were systematically investigated. Continuous bench-scale experiments showed that the permeate quality of the MCR satisfied the requirement for a centralized water supply, according to the Standards for Drinking Water Quality of China (GB B749-2006), as evaluated by turbidity (〈1 NTU) and total organic carbon (TOC) (〈5 mE/L) measurements. Besides water flux, the removal of turbidity, TOC and dissolved organic carbon (DOC) in the raw water also increased with increasing TMP in the range of 0.01-0.05 MPa. High ZP induced by PAC1, such as 5-9 mY, led to an increase in the number of fine and total particles in the MCR, and consequently caused serious membrane fouling and high permeate turbidity. However, the removal of TOC and DOC increased with increasing ZP. A slightly positive ZP, such as 1-2 mV, corresponding to charge neutralization coagulation, was favorable for membrane fouling control. Moreover, dosing with KMnO4 could further improve the removal of turbidity and DOC, thereby mitigating membrane fouling. The results are helpful for the application of the MCR in producing drinking water and also beneficial to the research and application of other coagulation and membrane separation hybrid processes. 展开更多
关键词 membrane coagulation reactor(MCR)Polyaluminum chloride (PAC1)Hybrid membrane processPotassium permanganate (KMnO4)Drinking water
原文传递
Effects of ion concentration and natural organic matter on arsenic(V) removal by nanofiltration under different transmembrane pressures 被引量:7
17
作者 Yang Yu Changwei Zhao +2 位作者 Yangui Wang Weihong Fan Zhaokun Luan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第2期302-307,共6页
The removal of As(V) from synthetic water was studied using four different nanofiltration (NF) membranes (ESNA-1-K1, NF270, ESNA-1-LF, and HODRA-CORE). The influences of ion concentration, transmembrane pressure... The removal of As(V) from synthetic water was studied using four different nanofiltration (NF) membranes (ESNA-1-K1, NF270, ESNA-1-LF, and HODRA-CORE). The influences of ion concentration, transmembrane pressure (TMP), and the presence of natural organic matter (humic acid, HA) on the arsenic removal efficiency and permeate flux were investigated. The arsenic rejection of ESNA- 1-LF was higher than those of the other membranes in all experiments (〉 94%), and the HODRA-CORE membrane gave the lowest removal of arsenic (〈 47%). An increase in the ion concentration in the feed solution and addition of HA decreased the arsenic rejection of the HODRA-CORE membrane. However, both increasing of the ion concentration and addition of HA made the rejection increased for the other membranes (ESNA-1-K1, NF270, and ESNA-1-LF). With increasing TMP, for all four NF membranes, increases in both arsenic rejection and permeate flux were observed. The permeate fluxes of the four NF membranes decreased to some extent after addition of HA to the solutions for operating time of 6 hr. 展开更多
关键词 arsenic removal nanofiltration drinking water membrane separation
原文传递
Stabilizing high-efficiency iridium single atoms via lattice confinement for acidic oxygen evolution
18
作者 Yibo Wang Jiadong Jiang +8 位作者 Zhaoping Shi Hongxiang Wu Jiahao Yang Pengbo Wang Shuai Hou Meiling Xiao Junjie Ge Changpeng Liu Wei Xing 《Nano Research》 SCIE EI CSCD 2024年第4期2492-2498,共7页
Stable and efficient single atom catalysts(SACs)are highly desirable yet challenging in catalyzing acidic oxygen evolution reaction(OER).Herein,we report a novel iridium single atom catalyst structure,with atomic Ir d... Stable and efficient single atom catalysts(SACs)are highly desirable yet challenging in catalyzing acidic oxygen evolution reaction(OER).Herein,we report a novel iridium single atom catalyst structure,with atomic Ir doped in tetragonal PdO matrix(IrSAs-PdO)via a lattice-confined strategy.The optimized IrSAs-PdO-0.10 exhibited remarkable OER activity with an overpotential of 277 mV at 10 mA·cm^(-2) and long-term stability of 1000 h in 0.5 M H_(2)SO_(4).Furthermore,the turnover frequency attains 1.6 s^(-1) at an overpotential of 300 mV with a 24-fold increase in the intrinsic activity.The high activity originates from isolated iridium sites with low valence states and decreased Ir–O bonding covalency,and the excellent stability is a result of the effective confinement of iridium sites by Ir–O–Pd motifs.Moreover,we demonstrated for the first time that SACs have great potential in realizing ultralow loading of iridium(as low as microgram per square center meter level)in a practical water electrolyzer. 展开更多
关键词 lattice confinement iridium single atoms ultralow iridium loading acidic oxygen evolution proton exchange membrane water electrolysis
原文传递
Corrosion Investigation by Scanning Electrochemical Microscopy of AISI 446 and Ti-Coated AISI 446 Ferritic Stainless Steel as Potential Material for Bipolar Plate in PEMWE
19
作者 Andrea Kellenberger Nicolae Vaszilcsin +4 位作者 Mircea Laurentiu Dan Ion Mitelea Alexandru Adrian Geana Sigrid Lædre Corneliu M.Craciunescu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第4期607-619,共13页
The components of proton exchange membrane water electrolysers frequently experience corrosion issues, especially at high anodic polarization, that restrict the use of more affordable alternatives to titanium. Here, w... The components of proton exchange membrane water electrolysers frequently experience corrosion issues, especially at high anodic polarization, that restrict the use of more affordable alternatives to titanium. Here, we investigate localized corrosion processes of bare and Ti-coated AISI 446 ferritic stainless steel under anodic polarization by scanning electrochemical microscopy (SECM) in sodium sulphate and potassium chloride solutions. SECM approach curves and area scans measured at open-circuit potential (OCP) of the samples in the feedback mode using a redox mediator evidence a negative feedback effect caused by the surface passive film. For the anodic polarization of the sample, the substrate generation-tip collection mode enables to observe local generation of iron (II) ions, as well as formation of molecular oxygen. For the uncoated AISI 446 sample, localized corrosion is detected in sodium sulphate solution simultaneously with oxygen formation at anodic potentials of 1.0 V vs. Ag/AgCl, whereas significant pitting corrosion is observed even at 0.2 V vs. Ag/AgCl in potassium chloride solution. The Ti-coated AISI 446 sample reveals enhanced corrosion resistance in both test solutions, without any evidence of iron (II) ions generation at anodic potentials of 1.2 V vs. Ag/AgCl, where only oxygen formation is observed. 展开更多
关键词 Ferritic stainless steel CORROSION Ti coating Scanning electrochemical microscopy(SECM) Magnetron sputtering Proton exchange membrane water electrolysis(PEMWE)
原文传递
Computational Fluid Dynamics Study of a Compound Flow Field for Proton Exchange Membrane Fuel Cell(PEMFC) Performance Enhancement 被引量:1
20
作者 Venkateswarlu VELISALA Gandhi PULLAGURA +1 位作者 Naveen Kumar CHINNAM Raju GANTA 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第6期2374-2384,共11页
The aim of the present work is to evaluate proton exchange membrane(PEM) fuel cell performance with a modified serpentine flow field with right angle turn by numerical modeling. A 3-D PEM fuel cell model of size 50 cm... The aim of the present work is to evaluate proton exchange membrane(PEM) fuel cell performance with a modified serpentine flow field with right angle turn by numerical modeling. A 3-D PEM fuel cell model of size 50 cm^(2) active area is developed. A conventional serpentine flow field is modified and the same is considered for the supply of reactants. Computational fluid dynamics(CFD) based simulations were conducted to analyse the pressure drop, distribution of reactants(H_(2) and O_(2)), liquid water activity, current flux density and water content in the membrane. From the simulation results, polarization curve is drawn to validate the literature data of PEMFC with the conventional serpentine flow field. Comparison of simulated polarization curve with literature data revealed that modified serpentine flow field performance is better than conventional serpentine flow field as it offers better water exclusion and uniform sharing of reactants. From this study, it is concluded that model of flow field pattern influences the functioning of fuel cell and utmost care must take while selecting a pattern for flow field of PEM fuel cell. 展开更多
关键词 PEM fuel cell CFD current density water removal modified serpentine flow field membrane water content
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部